版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在Rt△ABC中,∠C=90°.若AC=2BC,则sinA的值是()A. B. C. D.22.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE4.下列说法正确的是()A.“概率为1.1111的事件”是不可能事件B.任意掷一枚质地均匀的硬币11次,正面向上的一定是5次C.“任意画出一个等边三角形,它是轴对称图形”是随机事件D.“任意画出一个平行四边行,它是中心对称图形”是必然事件5.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()A.25° B.40° C.35° D.30°6.﹣3的绝对值是()A.﹣3 B.3 C.- D.7.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣ C.y=x2 D.y=﹣x28.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.或 B. C. D.或9.如图,平行四边形的顶点,在轴上,顶点在上,顶点在上,则平行四边形的面积是()A. B. C. D.10.如图,在矩形中,,,以为直径作.将矩形绕点旋转,使所得矩形的边与相切,切点为,边与相交于点,则的长为()A.2.5 B.1.5 C.3 D.411.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm12.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元二、填空题(每题4分,共24分)13.如图,在半径为5的⊙中,弦,是弦所对的优弧上的动点,连接,过点作的垂线交射线于点,当是以为腰的等腰三角形时,线段的长为_____.14.在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是____________.15.如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为____.16.已知扇形半径为5cm,圆心角为60°,则该扇形的弧长为________cm.17.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.18.中,若,,,则的面积为________.三、解答题(共78分)19.(8分)已知关于的一元二次方程
有实根.(1)求的取值范围;(2)求该方程的根.20.(8分)某批发商以50元/千克的成本价购入了某产品800千克,他随时都能一次性卖出这种产品,但考虑到在不同的日期市场售价都不一样,为了能把握好最恰当的销售时机,该批发商查阅了上年度同期的经销数据,发现:①如果将这批产品保存5天时卖出,销售价为80元;②如果将这批产品保存10天时卖出,销售价为90元;③该产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系;④这种产品平均每天将损耗10千克,且最多保存15天;⑤每天保存产品的费用为100元.根据上述信息,请你帮该批发商确定在哪一天一次性卖出这批产品能获取最大利润,并求出这个最大利润.21.(8分)如图,点A、B、C、D是⊙O上的四个点,AD是⊙O的直径,过点C的切线与AB的延长线垂直于点E,连接AC、BD相交于点F.(1)求证:AC平分∠BAD;(2)若⊙O的半径为,AC=6,求DF的长.22.(10分)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?23.(10分)某种蔬菜的售价(元)与销售月份之间的关系如图所示,成本(元)与销售月份之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价成本)(2)设每千克该蔬菜销售利润为,请列出与之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?24.(10分)如图,AB是⊙O的直径,点C是圆周上一点,连接AC、BC,以点C为端点作射线CD、CP分别交线段AB所在直线于点D、P,使∠1=∠2=∠A.(1)求证:直线PC是⊙O的切线;(2)若CD=4,BD=2,求线段BP的长.25.(12分)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.26.如图一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(n,﹣1),B(,﹣4)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)若点C坐标为(0,2),求△ABC的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】设BC=x,可得AC=2x,Rt△ABC中利用勾股定理算出AB=x,然后利用三角函数在直角三角形中的定义,可算出sinA的值.【详解】解:由AC=2BC,设BC=x,则AC=2x,
∵Rt△ABC中,∠C=90°,
∴根据勾股定理,得AB=.
因此,sinA=.
故选:C.【点睛】本题已知直角三角形的两条直角边的关系,求角A的正弦之值.着重考查了勾股定理、三角函数的定义等知识,属于基础题.2、C【解析】试题解析:A.“购买1张彩票就中奖”是不可能事件,错误;B.“概率为0.0001的事件”是不可能事件,错误;C.“任意画一个三角形,它的内角和等于180°”是必然事件,正确;D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.3、B【解析】试题分析:A.OA=OB=OE,所以点O为△ABE的外接圆圆心;B.OA=OC≠OF,所以点不是△ACF的外接圆圆心;C.OA=OB=OD,所以点O为△ABD的外接圆圆心;D.OA=OD=OE,所以点O为△ADE的外接圆圆心;故选B考点:三角形外心4、D【分析】根据不可能事件、随机事件、以及必然事件的定义(即根据事件发生的可能性大小)逐项判断即可.【详解】在一定条件下,不可能发生的事件叫不可能事件;一定会发生的事件叫必然事件;可能发生也可能不发生的事件叫随机事件A、“概率为的事件”是随机事件,此项错误B、任意掷一枚质地均匀的硬币11次,正面向上的不一定是5次,此项错误C、“任意画出一个等边三角形,它是轴对称图形”是必然事件,此项错误D、“任意画出一个平行四边行,它是中心对称图形”是必然事件,此项正确故选:D.【点睛】本题考查了不可能事件、随机事件、以及必然事件的定义,掌握理解相关定义是解题关键.5、C【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.6、B【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.7、D【分析】可以采用排除法得出答案,由点A(-2,m),B(2,m)关于y轴对称,于是排除选项A、B;再根据B(2,m),C(3,m﹣n)(n>0)的特点和二次函数的性质,可知抛物线在对称轴的右侧呈下降趋势,所以抛物线的开口向下,即a<0.【详解】解:∵A(-2,m),B(2,m)关于y轴对称,且在同一个函数的图像上,
而,的图象关于原点对称,∴选项A、B错误,只能选C、D,,
;
∵,在同一个函数的图像上,而y=x2在y轴右侧呈上升趋势,∴选项C错误,而D选项符合题意.故选:D.【点睛】本题考查正比例函数、反比例函数、二次函数的图象和性质,熟悉各个函数的图象和性质是解题的基础,发现点的坐标关系是解题的关键.8、D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或-即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为,把△ABO缩小,
∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).
故选D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9、D【分析】先过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,再根据反比例函数系数k的几何意义,求得△ABE的面积=△COD的面积相等=|k2|,△AOE的面积=△CBD的面积相等=|k1|,最后计算平行四边形的面积.【详解】解:过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,根据∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE与S△COD相等,又∵点C在的图象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四边形OABC的面积=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故选D.【点睛】本题主要考查了反比例函数系数k的几何意义,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.10、D【分析】连接OE,延长EO交CD于点G,作于点H,通过旋转的性质和添加的辅助线得到四边形和都是矩形,利用勾股定理求出的长度,最后利用垂径定理即可得出答案.【详解】连接OE,延长EO交CD于点G,作于点H则∵矩形ABCD绕点C旋转所得矩形为∴四边形和都是矩形,∵四边形都是矩形即故选:D.【点睛】本题主要考查矩形的性质,勾股定理及垂径定理,掌握矩形的性质,勾股定理及垂径定理是解题的关键.11、C【解析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm,则大三角形的周长为(x+40)cm,
由题意得,,
解得,x=75,
则x+40=115,故选C.12、A【解析】.所以4月份营业额约为3×30=90(万元).二、填空题(每题4分,共24分)13、8或【解析】根据题意,以为腰的等腰三角形有两种情况,当AB=AP时,利用垂径定理及相似三角形的性质列出比例关系求解即可,当AB=BP时,通过角度运算,得出BC=AB=8即可.【详解】解:①当AB=AP时,如图,连接OA、OB,延长AO交BP于点G,故AG⊥BP,过点O作OH⊥AB于点H,∵在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,∴,由垂径定理可知,∴,在Rt△OAH中,在Rt△CAP中,,且∴,在Rt△PAG与Rt△PCA中,∠GPA=∠APC,∠PGA=∠PAC,∴Rt△PAG∽Rt△PCA∴,则,∴;②当AB=BP时,如下图所示,∠BAP=∠BPA,∴在Rt△PAC中,∠C=90°-∠BPA=90°-∠BAP=∠CAB,∴BC=AB=8故答案为8或【点睛】本题考查了圆的性质及圆周角定理、相似三角形的性质、等腰三角形的判定等知识点,综合性较强,难度较大,解题的关键是灵活运用上述知识进行推理论证.14、(-3,4)【详解】在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是(-3,4).故答案为(-3,4).【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,它们的坐标符号相反.15、【分析】连接BE,由菱形和折叠的性质,得到AF=EF,∠C=∠A=60°,由cos∠C=,,得到△BCE是直角三角形,则,则△BEF也是直角三角形,设菱形的边长为,则EF=,,由勾股定理,求出FB=,则,即可得到cos∠EFB的值.【详解】解:如图,连接BE,∵四边形ABCD是菱形,∴AB=BC=CD,∠C=∠A=60°,AB∥DC,由折叠的性质,得AF=EF,则EF=ABFB,∵cos∠C=,∵点E是CD的中线,∴,∴,∴△BCE是直角三角形,即BE⊥CD,∴BE⊥AB,即△BEF是直角三角形.设BC=m,则BE=,在Rt△BEF中,EF=,由勾股定理,得:,∴,解得:,则,∴;故答案为:.【点睛】本题考查了解直角三角形,特殊角的三角函数值,菱形的性质,折叠的性质,以及勾股定理的运用,解题的关键是正确作出辅助线,构造直角三角形,从而利用解直角三角形进行解题.16、【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.17、1【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:=8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得=1cm.故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.18、【分析】过点A作BC边上的高交BC的延长线于点D,在中,利用三角函数求出AD长,再根据三角形面积公式求解即可.【详解】解:如图,作于点D,则,在中,所以的面积为故答案为:.【点睛】本题主要考查了三角函数,灵活添加辅助线利用三角函数求出三角形的高是解题的关键.三、解答题(共78分)19、(1);(2)【分析】(1)根据根的判别式,列不等式求出k的取值范围即可.(2)用公式法解方程即可.【详解】(1)由一元二次方程有实数根,可以得出≥1,即(-2)2-4(k+1)≥1,解得:k≤1.(2),x==.【点睛】本题主要考查根的判别式以及公式法解一元二次方程的方法,熟记根的判别式以及一元二次方程解得公式是解题关键.20、保存15天时一次性卖出能获取最大利润,最大利润为23500元【分析】根据题意求出产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系y=2x+1,根据利润=售价×销售量-保管费-成本,可利用配方法求出最大利润.【详解】解:由题意可求得y=2x+1.设保存x天时一次性卖出这批产品所获得的利润为w元,则w=(800-10x)(2x+1)-100x-50×800=-20x2+800x+16000=-20(x-20)2+24000∵0<x≤15,∴x=15时,w最大=23500答:保存15天时一次性卖出能获取最大利润,最大利润为23500元.【点睛】此题主要考查了二次函数在实际生活中的应用,熟练掌握将实际生活中的问题转化为二次函数是解题的关键.21、(1)证明见解析;(2).【分析】(1)连接OC,先证明OC∥AE,从而得∠OCA=∠EAC,再利用OA=OC得∠OAC=∠OCA,等量代换即可证得答案;(2)设OC交BD于点G,连接DC,先证明△ACD∽△AEC,从而利用相似三角形的性质解得,再利用=cos∠FDC,代入相关线段的长可求得DF.【详解】(1)证明:如图,连接OC∵过点C的切线与AB的延长线垂直于点E,∴OC⊥CE,CE⊥AE∴OC∥AE∴∠OCA=∠EAC∵OA=OC∴∠OAC=∠OCA∴∠OAC=∠EAC,即AC平分∠BAD;(2)如图,设OC交BD于点G,连接DC∵AD为直径∴∠ACD=90°,∠ABD=90°∵CE⊥AE∴DB∥CE∵OC⊥CE∴OC⊥BD∴DG=BG∵∠OAC=∠EAC,∠ACD=90°=∠E∴△ACD∽△AEC∴∵⊙O的半径为,AC=6∴AD=7,∴∴易得四边形BECG为矩形∴DG=BG=∵=cos∠FDC∴解得:∴DF的长为.【点睛】本题考查相似三角形的性质,借助辅助线,判定△ACD∽△AEC,再根据相似三角形的性质求解.22、渔船没有进入养殖场的危险.【解析】试题分析:点B作BM⊥AH于M,过点C作CN⊥AH于N,利用直角三角形的性质求得CK的长,若CK>4.8则没有进入养殖场的危险,否则有危险.试题解析:过点B作BM⊥AH于M,∴BM∥AF.∴∠ABM=∠BAF=30°.在△BAM中,AM=AB=5,BM=.过点C作CN⊥AH于N,交BD于K.在Rt△BCK中,∠CBK=90°-60°=30°设CK=,则BK=在Rt△ACN中,∵∠CAN=90°-45°=45°,∴AN=NC.∴AM+MN=CK+KN.又NM=BK,BM=KN.∴.解得∵5海里>4.8海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场危险.23、(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=,5月份出售这种蔬菜,每千克的收益最大为元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克.【分析】(1)找出x=6时,y1、y2的值,根据利润=售价-成本进行计算即可;(2)利用待定系数法分别求出y1、y2关于x的函数关系式,然后根据P=y1-y2得到关于x的函数关系式,然后利用二次根式的性质进行求解即可;(3)求出当x=4时,P的值,设4月份的销售量为t千克,则5月份的销售是为(t+20000)千克,根据总利润=每千克利润×销售数量,即可得出关于t的方程,解方程即可求得答案.【详解】(1)当x=6时,y1=3,y2=1,∵y1-y2=3-1=2,∴6月份出售这种蔬菜每千克的利润是2元;(2)设y1=mx+n,y2=a(x-6)2+1,将(3,5)、(6,3)分别代入y1=mx+n,得,解得:,∴;将(3,4)代入y2=a(x-6)2+1,得,4=a(3-6)2+1,解得:a=,∴,∴P==,∵,∴当x=5时,P取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大,最大值为元;(3)当x=4时,P==2,设4月份的销售量为t千克,则5月份的销售量为(t+20000)千克,根据题意得:,解得:t=40000,∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为60000千克.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质等知识,综合性较强,弄清题意,读懂图象,灵活运用相关知识是解题的关键.24、(1)详见解析;(2)【分析】(1)连接OC,由AB是⊙O的直径证得∠ACO+∠BCO=90°,由OA=OC证得∠2=∠A=∠ACO,由此得到∠PCO=90°,即证得直线PC是⊙O的切线;(2)利用∠1=∠A证得∠CDB=90°,得到CD2=AD•BD,求出AD,由此求得AB=10,OB=5;在由∠OCP=90°推出OC2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省昆明市九县区2023-2024学年六年级上学期英语期末试卷
- 文化行业安全生产培训方案
- 2023年吉林省辽源市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2023年浙江省衢州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年山东省青岛市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年辽宁省营口市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 毕业学员发言稿
- 《MTP管理教材》课件
- 《行业高增长确定》课件
- 暑假计算题综合自检卷练习题数学三年级下册
- 疗愈行业现状分析
- 北京海淀区2023-2024学年六年级上学期期末数学数学试卷
- 2023年安全总监年终工作总结
- 浙江省杭州拱墅区2023-2024学年六年级上学期期末语文试题
- 以消费者为中心:提升营销效果的技巧
- 部编版四年级道德与法治上册期末复习计划
- 兽用疫苗管理制度
- 2023瑞幸员工合同协议书
- 大气数据测试仪校准规范
- 硬笔书法田字格标准尺寸
- 升降柱 施工方案
评论
0/150
提交评论