




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhatisMultivariateAnalysisMultivariateanalysisisthebestwaytosummarizeadatatableswithmanyvariablesbycreatingafewnewvariablescontainingmostoftheinformation.Thesenewvariablesarethenusedforproblemsolvinganddisplay,i.e.,classification,relationships,controlcharts,andmore.Thenewvariables,thescores,denotedbyt,arecreatedasweightedlinearcombinationsoftheoriginalvariables.Eachobservationshast-values.PCA,thebasicMVmethod,summarizesonedatatable.Plottingthescores(t’s)givesanoverviewoftheobservations(objects)PLSsummarizessimultaneously2datatables(Xthepredictorvariables)and
(Ytheresponsevariables)inordertodeveloparelationshipbetweenthemPCAandPLSarecalledProjectionmethods1/4/20231SIMCA-PGettingstarted.pptWhatisMultivariateAnalysisMWhatisaProjection?
Reductionofdimensionality,modelinlatentvariablesAlgebraicallySummarizestheinformationintheobservationsasafewnew(latent)variablesGeometricallyTheswarmofpointsinaKdimensionalspace
(K=numberofvariables)isapproximatedbya(hyper)planeandthepointsareprojectedonthatplane.1/4/20232SIMCA-PGettingstarted.pptWhatisaProjection?
ReductioNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)t:theXscores;thenewsummarizingvariables(coordinatesinthehyperplaneofX-space)u:theYscoresinPLS;thenewsummarizingvariables(coordinatesinthehyperplaneofY-space,whenYismultidimensional)p:thePCloadings.ThesearetheweightsthatinPCAcombinetheoriginalvariablesinXtoformthenewvariables,scorest.w*:thePLSweights.ThesearetheweightsthatinPLScombinetheoriginalvariablesinXtoformthenewvariables,scorest.c:theweightsusedtocombinetheY'stoformthescoresu.1/4/20233SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)OneComponentconsistsofonetandonep(PCA)ort,p,w,u,c(PLS).ThetotalnumberofcomponentsisA.Model:Thedataareapproximatedbyaplaneorhyperplane,(themodel)withasmanydimensionsascomponentsextracted.DModX:alsocalledDistancetothemodel,isthedistanceofagivenobservationtothemodelplane.T2:Hotelling’sT2,isacombinationofallthescores(t)ofallAcomponents.T2measureshowfarawayanobservationisfromthecenterofaPCorPLSmodel.1/4/20234SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotationR2X:ThefractionofthevariationoftheXvariablesexplainedbythemodel.R2Y:ThefractionofthevariationoftheYvariablesexplainedbythemodel.Q2X:ThefractionofthevariationoftheXvariablespredictedbythemodel.Q2Y:ThefractionofthevariationoftheYvariablespredictedbythemodel.1/4/20235SIMCA-PGettingstarted.pptNotationR2X:ThefractionofMVA–SIMCARoadMap
MethodsavailablePreprocessing;trimmingandWinsorizing(takeawayextremes)PrincipalComponentsAnalysis(PCA;overviewofdata)ProjectiontoLatentStructures(PLS;relationshipsXY)SimcaclassificationPLS-discriminantanalysis(classification)HierarchicalPCAandPLSPredictionsandclassificationofnewdatausinganymodel1/4/20236SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
MethodsaMVA–SIMCARoadMap
Dataset=alldata;Workset=workingcopyofdataWorkmainmenusfromlefttorightandpop-upmenusfromuptodownPlot/Listallowsyoutoplotorlistanythingnon-standard,notfoundunderAnalysis1/4/20237SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
DatasetStepsinusingSIMCA-PusingthewizardStartanewprojectandimportthedatasetUsetheworksetwizardtoguidethroughbuildingtheworksetandfittingthemodelGeneratethereportwritertowalkthroughthemodelresultsandinterpretationWhendisplayingSimca-PplotsalwaysusetheAnalysisadvisertoguideyou.1/4/20238SIMCA-PGettingstarted.pptStepsinusingSIMCA-PusingWorksetwizardonON1/4/20239SIMCA-PGettingstarted.pptWorksetwizardonON12/18/20229Worksetwizard1/4/202310SIMCA-PGettingstarted.pptWorksetwizard12/18/202210SIMCAutotransformvariables
Totransformallvariablesifanyneeded,markthecheckbox1/4/202311SIMCA-PGettingstarted.pptAutotransformvariables
TotraAutomaticcreationofclassesforclassificationordiscrimination1/4/202312SIMCA-PGettingstarted.pptAutomaticcreationofclassesSelectionandFitofmodel1/4/202313SIMCA-PGettingstarted.pptSelectionandFitofmodel12/1Reportwriter
Walksyouthroughthemodelresultswithinterpretation:File|GenerateReport1/4/202314SIMCA-PGettingstarted.pptReportwriter
WalksyouthrouStepsinUsingSIMCA-P,AdvancedModeStartanewprojectandimportthedatasetExploreandpreprocessthedataMakeworkingcopyofselecteddata(workset)formodelbuildingSpecifymodeltypeandfitittotheworksetReviewfit(plots,diagnostics,coefficients,etc.)PredictionsGenerateReport1/4/202315SIMCA-PGettingstarted.pptStepsinUsingSIMCA-P,Advanc1a.FileNew
StartinganewprojectSelectthedatafilecontainingtherawdataoftheprojectdirectory,filetype(XLS,DIF,TXT,…..),filenameAWizardopens(seenextpage)allowingyoutospecify(optionally)therowcontainingtheVariablenames,and(optionally)thecolumnswiththeObs.NumbersandNamesHere(Commands)youcanalsodoadditionalthingssuchastransposingtheinputdatamatrixUsesimplemodewithworksetwizardAtthelastWizardpage,youcan(optionally)specifyanothernameanddirectoryfortheproject.AmapofthemissingdataisshownTheWizardfinishesandputsyouintheSimca-windowAstartingworkset(M1,alldata,allX-s,UV-scaled)isready1/4/202316SIMCA-PGettingstarted.ppt1a.FileNew
Startinganewpr1b.ThesecondscreenoftheWizard1/4/202317SIMCA-PGettingstarted.ppt1b.ThesecondscreenoftheW2.LookingatthedataWiththedatasettableopen(Datasetedit):QuickInfo(bothvarandobswindowscanbeopen)variablesobservationsMovingthecursorinthedatasettableupanddown,orsidewise,changesthedisplayedvariableandobservationInthequickinfooptionsyoucanspecifywhatyouwanttolookat(histograms,auto-correlations,…),aswellaswhichitemsshouldbethebasisfortheplots1/4/202318SIMCA-PGettingstarted.ppt2.LookingatthedataWiththeViewvariablesorObservations,Trim,etc.
QuickInfo1/4/202319SIMCA-PGettingstarted.pptViewvariablesorObservations3.Prepareaworkcopy:TheWorkset
SimpleModewithguidance,orAdvancedModeInWorkset,youprepareaworkingcopyofthepartofthedatayouwillanalyze,i.e.,useasthebasisofyourmodel.Hereyouspecifytransformation,scaling,androlesofvariables(XorYorexcluded).Also,youselecttheobservations(your“trainingset”).Youcanstartwiththepreviousworkset(Workset/Newasmodelxx)andthenmodifyit,e.g.,excludingobservations.WhateveryoudoinWorksetdoesNOTtouchtherawdataNotethatoutliersarejustspecifiedas“notincluded”inthenextworkset(the“polished”data).OutliersareNEVERremovedfromtherawdataset.1/4/202320SIMCA-PGettingstarted.ppt3.Prepareaworkcopy:TheWoWorkset:twoModes,SimpleandAdvanced1/4/202321SIMCA-PGettingstarted.pptWorkset:twoModes,Simpleand4.Analysis
FittheModeltotheWorksetDataEithermenu“Analysis/Autofit”orFastButtonAmodelwithappropriatenumberofcomponentsisfoundIfnothinghappens,getthetwofirstcomponents
(alsomenuorfastbutton)Atableappearsshowingthemodel,componentbycomponent.Morecomponentscanbeadded(menuorfastbutton)Doubleclickonamodeltospecifyatitle1/4/202322SIMCA-PGettingstarted.ppt4.Analysis
FittheModeltot5.Plotresults
Analysis/menu(orfastbuttons)Summary/X/Y-OverviewshowsR2andQ2forallvar.sScores–scatterplot,t1-t2andt1-u1&t2-u2(PLS)Loadings–scatterplot(p1-p2froPCA,wc1-wc2forPLS)DistancetoModel–lineplotContributionplotstointerpretinterestingobservations,e.g.outliers,jumps,…Forallplots,therightmousebutton,propertiesallowschoiceofplotmarkers,andmoreThegraphicaltoolboxallowsfurthermodifications1/4/202323SIMCA-PGettingstarted.ppt5.Plotresults
Analysis/men6a.Outlierswereseeninthescoreplot
(welloutsidetheHotellingellipse)Startanotherworkset (eitherfromWorkset/Newasmodelxx,orusingthegraphicaltool-boxtoremoveoutliersfromthescoreplot)NotethatoutliersshouldNOTbedeletedfromthedatabyEdit/DatasetWhenthenewworksetisall-right,returnto“4.Analysis”tofitanewmodeltothenewworkset (fastbuttonorAnalysis/Autofit)1/4/202324SIMCA-PGettingstarted.ppt6a.Outlierswereseeninthe6b.Nooutlierswereseeninthescoreplots
(ortheyhavebeenexcluded,andthescoreplotsnowlookall-right)Now,interpretthemodelLookat“patterns”,trends,etc.,inthescoreplotsInspecttheloadingplotstointerprettheabovepatternsLookatDModXWhatdothesepatternssayabouttheobjectiveoftheinvestigation?1/4/202325SIMCA-PGettingstarted.ppt6b.NooutlierswereseenintAnalysisAdvisortounderstandandinterpretmodelresults1/4/202326SIMCA-PGettingstarted.pptAnalysisAdvisortounderstand7.Predictions
NewData,PredictionSetUnderPredictions,specifythesetofobservationsforwhichpredictionswillbemade,thepredictionsetNewdatacanbereadinasasecondarydataset (File/Import)andpredictionscanbemadeforthesePredictionset/ComplementWS,givesapredictionsetwiththoseobservationsthatwerenotinthetrainingsetPredictions/Y-predicted,T-predicted,etc.,calculatesanddisplaysthepredictedvaluesaccordingly1/4/202327SIMCA-PGettingstarted.ppt7.Predictions
NewData,Pred8.Generatethereport,withcustomizabletemplates1/4/202328SIMCA-PGettingstarted.ppt8.Generatethereport,withcUseoftheseslidesYoumayuseanyoralloftheseslidesinyourownpresentations,providedthatyoukeep(anddonotmodify)theUmetricslogoandwebreferenceIfyouhaveanyproblemswiththesoftware,orwithunderstandingofthematerial,pleasee-mailusat
info@1/4/202329SIMCA-PGettingstarted.pptUseoftheseslidesYoumayuseWhatisMultivariateAnalysisMultivariateanalysisisthebestwaytosummarizeadatatableswithmanyvariablesbycreatingafewnewvariablescontainingmostoftheinformation.Thesenewvariablesarethenusedforproblemsolvinganddisplay,i.e.,classification,relationships,controlcharts,andmore.Thenewvariables,thescores,denotedbyt,arecreatedasweightedlinearcombinationsoftheoriginalvariables.Eachobservationshast-values.PCA,thebasicMVmethod,summarizesonedatatable.Plottingthescores(t’s)givesanoverviewoftheobservations(objects)PLSsummarizessimultaneously2datatables(Xthepredictorvariables)and
(Ytheresponsevariables)inordertodeveloparelationshipbetweenthemPCAandPLSarecalledProjectionmethods1/4/202330SIMCA-PGettingstarted.pptWhatisMultivariateAnalysisMWhatisaProjection?
Reductionofdimensionality,modelinlatentvariablesAlgebraicallySummarizestheinformationintheobservationsasafewnew(latent)variablesGeometricallyTheswarmofpointsinaKdimensionalspace
(K=numberofvariables)isapproximatedbya(hyper)planeandthepointsareprojectedonthatplane.1/4/202331SIMCA-PGettingstarted.pptWhatisaProjection?
ReductioNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)t:theXscores;thenewsummarizingvariables(coordinatesinthehyperplaneofX-space)u:theYscoresinPLS;thenewsummarizingvariables(coordinatesinthehyperplaneofY-space,whenYismultidimensional)p:thePCloadings.ThesearetheweightsthatinPCAcombinetheoriginalvariablesinXtoformthenewvariables,scorest.w*:thePLSweights.ThesearetheweightsthatinPLScombinetheoriginalvariablesinXtoformthenewvariables,scorest.c:theweightsusedtocombinetheY'stoformthescoresu.1/4/202332SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)OneComponentconsistsofonetandonep(PCA)ort,p,w,u,c(PLS).ThetotalnumberofcomponentsisA.Model:Thedataareapproximatedbyaplaneorhyperplane,(themodel)withasmanydimensionsascomponentsextracted.DModX:alsocalledDistancetothemodel,isthedistanceofagivenobservationtothemodelplane.T2:Hotelling’sT2,isacombinationofallthescores(t)ofallAcomponents.T2measureshowfarawayanobservationisfromthecenterofaPCorPLSmodel.1/4/202333SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotationR2X:ThefractionofthevariationoftheXvariablesexplainedbythemodel.R2Y:ThefractionofthevariationoftheYvariablesexplainedbythemodel.Q2X:ThefractionofthevariationoftheXvariablespredictedbythemodel.Q2Y:ThefractionofthevariationoftheYvariablespredictedbythemodel.1/4/202334SIMCA-PGettingstarted.pptNotationR2X:ThefractionofMVA–SIMCARoadMap
MethodsavailablePreprocessing;trimmingandWinsorizing(takeawayextremes)PrincipalComponentsAnalysis(PCA;overviewofdata)ProjectiontoLatentStructures(PLS;relationshipsXY)SimcaclassificationPLS-discriminantanalysis(classification)HierarchicalPCAandPLSPredictionsandclassificationofnewdatausinganymodel1/4/202335SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
MethodsaMVA–SIMCARoadMap
Dataset=alldata;Workset=workingcopyofdataWorkmainmenusfromlefttorightandpop-upmenusfromuptodownPlot/Listallowsyoutoplotorlistanythingnon-standard,notfoundunderAnalysis1/4/202336SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
DatasetStepsinusingSIMCA-PusingthewizardStartanewprojectandimportthedatasetUsetheworksetwizardtoguidethroughbuildingtheworksetandfittingthemodelGeneratethereportwritertowalkthroughthemodelresultsandinterpretationWhendisplayingSimca-PplotsalwaysusetheAnalysisadvisertoguideyou.1/4/202337SIMCA-PGettingstarted.pptStepsinusingSIMCA-PusingWorksetwizardonON1/4/202338SIMCA-PGettingstarted.pptWorksetwizardonON12/18/20229Worksetwizard1/4/202339SIMCA-PGettingstarted.pptWorksetwizard12/18/202210SIMCAutotransformvariables
Totransformallvariablesifanyneeded,markthecheckbox1/4/202340SIMCA-PGettingstarted.pptAutotransformvariables
TotraAutomaticcreationofclassesforclassificationordiscrimination1/4/202341SIMCA-PGettingstarted.pptAutomaticcreationofclassesSelectionandFitofmodel1/4/202342SIMCA-PGettingstarted.pptSelectionandFitofmodel12/1Reportwriter
Walksyouthroughthemodelresultswithinterpretation:File|GenerateReport1/4/202343SIMCA-PGettingstarted.pptReportwriter
WalksyouthrouStepsinUsingSIMCA-P,AdvancedModeStartanewprojectandimportthedatasetExploreandpreprocessthedataMakeworkingcopyofselecteddata(workset)formodelbuildingSpecifymodeltypeandfitittotheworksetReviewfit(plots,diagnostics,coefficients,etc.)PredictionsGenerateReport1/4/202344SIMCA-PGettingstarted.pptStepsinUsingSIMCA-P,Advanc1a.FileNew
StartinganewprojectSelectthedatafilecontainingtherawdataoftheprojectdirectory,filetype(XLS,DIF,TXT,…..),filenameAWizardopens(seenextpage)allowingyoutospecify(optionally)therowcontainingtheVariablenames,and(optionally)thecolumnswiththeObs.NumbersandNamesHere(Commands)youcanalsodoadditionalthingssuchastransposingtheinputdatamatrixUsesimplemodewithworksetwizardAtthelastWizardpage,youcan(optionally)specifyanothernameanddirectoryfortheproject.AmapofthemissingdataisshownTheWizardfinishesandputsyouintheSimca-windowAstartingworkset(M1,alldata,allX-s,UV-scaled)isready1/4/202345SIMCA-PGettingstarted.ppt1a.FileNew
Startinganewpr1b.ThesecondscreenoftheWizard1/4/202346SIMCA-PGettingstarted.ppt1b.ThesecondscreenoftheW2.LookingatthedataWiththedatasettableopen(Datasetedit):QuickInfo(bothvarandobswindowscanbeopen)variablesobservationsMovingthecursorinthedatasettableupanddown,orsidewise,changesthedisplayedvariableandobservationInthequickinfooptionsyoucanspecifywhatyouwanttolookat(histograms,auto-correlations,…),aswellaswhichitemsshouldbethebasisfortheplots1/4/202347SIMCA-PGettingstarted.ppt2.LookingatthedataWiththeViewvariablesorObservations,Trim,etc.
QuickInfo1/4/202348SIMCA-PGettingstarted.pptViewvariablesorObservations3.Prepareaworkcopy:TheWorkset
SimpleModewithguidance,orAdvancedModeInWorkset,youprepareaworkingcopyofthepartofthedatayouwillanalyze,i.e.,useasthebasisofyourmodel.Hereyouspecifytransformation,scaling,androlesofvariables(XorYorexcluded).Also,youselecttheobservations(your“trainingset”).Youcanstartwiththepreviousworkset(Workset/Newasmodelxx)andthenmodifyit,e.g.,excludingobservations.WhateveryoudoinWorksetdoesNOTtouchtherawdataNotethatoutliersarejustspecifiedas“notincluded”inthenextworkset(the“polished”data).OutliersareNEVERremovedfromtherawdataset.1/4/202349SIMCA-PGettingstarted.ppt3.Prepareaworkcopy:TheWoWorkset:twoModes,SimpleandAdvanced1/4/202350SIMCA-PGettingstarted.pptWorkset:twoModes,Simpleand4.Analysis
FittheModeltotheWorksetDataEithermenu“Analysis/Autofit”orFastButtonAmodelwithappropriatenumberofcomponentsisfoundIfnothinghappens,getthetwofirstcomponents
(alsomenuorfastbutton)Atableappearsshowingthemodel,componentbycomponent.Morecomponentscanbeadded(menuorfastbutton)Doubleclickonamodeltospecifyatitle1/4/202351SIMCA-PGettingstarted.ppt4.Analysis
FittheModeltot5.Plotresults
Analysis/menu(orfastbuttons)Summary/X/Y-OverviewshowsR2andQ2forallvar.sScores–scatterplot,t1-t2andt1-u1&t2-u2(PLS)Loadings–scatterplot(p1-p2froPCA,wc1-wc2forPLS)DistancetoModel–lineplotContributionplotstointerpretinterestingobservations,e.g.outliers,jumps,…Forallplots,therightmousebutton,propertiesallowschoiceofplotmarkers,andmoreThegraphicaltoolboxallowsfur
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级自我管理提升计划
- 急诊安全文化建设实践计划
- 实验室安全规范与培训计划
- 学校教学活动安排计划
- 秘书在团队沟通中的角色计划
- 小班三维课程与教育理念实践计划
- 2025年美司那项目建议书
- 2025年中国异构计算行业市场运行态势及发展趋势预测报告-智研咨询发布
- 2025年多通道脑电图机项目建议书
- 淮安市2024-2025学年上学期高一期末考试地理试题(含答案)
- 2024年国家基本公卫-老年人健康管理-考试复习题库(含答案)
- 第三讲:虹吸管及水泵的水力计算
- 网络系统集成(第二版) 课件第一章 网络系统集成绪论
- 口腔科院感知识培训针刺伤
- 土地管理学课件
- 真菌性角膜炎的护理
- 《认识人民币》完整版
- 工程施工风险研判报告及安全风险管控防范应对措施
- 科普作家协会会员
- ptmeg生产工艺技术
- 新型显示行业Mini LED Micro LED Micro OLED多点开花产业链如何聚焦
评论
0/150
提交评论