版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhatisMultivariateAnalysisMultivariateanalysisisthebestwaytosummarizeadatatableswithmanyvariablesbycreatingafewnewvariablescontainingmostoftheinformation.Thesenewvariablesarethenusedforproblemsolvinganddisplay,i.e.,classification,relationships,controlcharts,andmore.Thenewvariables,thescores,denotedbyt,arecreatedasweightedlinearcombinationsoftheoriginalvariables.Eachobservationshast-values.PCA,thebasicMVmethod,summarizesonedatatable.Plottingthescores(t’s)givesanoverviewoftheobservations(objects)PLSsummarizessimultaneously2datatables(Xthepredictorvariables)and
(Ytheresponsevariables)inordertodeveloparelationshipbetweenthemPCAandPLSarecalledProjectionmethods1/4/20231SIMCA-PGettingstarted.pptWhatisMultivariateAnalysisMWhatisaProjection?
Reductionofdimensionality,modelinlatentvariablesAlgebraicallySummarizestheinformationintheobservationsasafewnew(latent)variablesGeometricallyTheswarmofpointsinaKdimensionalspace
(K=numberofvariables)isapproximatedbya(hyper)planeandthepointsareprojectedonthatplane.1/4/20232SIMCA-PGettingstarted.pptWhatisaProjection?
ReductioNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)t:theXscores;thenewsummarizingvariables(coordinatesinthehyperplaneofX-space)u:theYscoresinPLS;thenewsummarizingvariables(coordinatesinthehyperplaneofY-space,whenYismultidimensional)p:thePCloadings.ThesearetheweightsthatinPCAcombinetheoriginalvariablesinXtoformthenewvariables,scorest.w*:thePLSweights.ThesearetheweightsthatinPLScombinetheoriginalvariablesinXtoformthenewvariables,scorest.c:theweightsusedtocombinetheY'stoformthescoresu.1/4/20233SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)OneComponentconsistsofonetandonep(PCA)ort,p,w,u,c(PLS).ThetotalnumberofcomponentsisA.Model:Thedataareapproximatedbyaplaneorhyperplane,(themodel)withasmanydimensionsascomponentsextracted.DModX:alsocalledDistancetothemodel,isthedistanceofagivenobservationtothemodelplane.T2:Hotelling’sT2,isacombinationofallthescores(t)ofallAcomponents.T2measureshowfarawayanobservationisfromthecenterofaPCorPLSmodel.1/4/20234SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotationR2X:ThefractionofthevariationoftheXvariablesexplainedbythemodel.R2Y:ThefractionofthevariationoftheYvariablesexplainedbythemodel.Q2X:ThefractionofthevariationoftheXvariablespredictedbythemodel.Q2Y:ThefractionofthevariationoftheYvariablespredictedbythemodel.1/4/20235SIMCA-PGettingstarted.pptNotationR2X:ThefractionofMVA–SIMCARoadMap
MethodsavailablePreprocessing;trimmingandWinsorizing(takeawayextremes)PrincipalComponentsAnalysis(PCA;overviewofdata)ProjectiontoLatentStructures(PLS;relationshipsXY)SimcaclassificationPLS-discriminantanalysis(classification)HierarchicalPCAandPLSPredictionsandclassificationofnewdatausinganymodel1/4/20236SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
MethodsaMVA–SIMCARoadMap
Dataset=alldata;Workset=workingcopyofdataWorkmainmenusfromlefttorightandpop-upmenusfromuptodownPlot/Listallowsyoutoplotorlistanythingnon-standard,notfoundunderAnalysis1/4/20237SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
DatasetStepsinusingSIMCA-PusingthewizardStartanewprojectandimportthedatasetUsetheworksetwizardtoguidethroughbuildingtheworksetandfittingthemodelGeneratethereportwritertowalkthroughthemodelresultsandinterpretationWhendisplayingSimca-PplotsalwaysusetheAnalysisadvisertoguideyou.1/4/20238SIMCA-PGettingstarted.pptStepsinusingSIMCA-PusingWorksetwizardonON1/4/20239SIMCA-PGettingstarted.pptWorksetwizardonON12/18/20229Worksetwizard1/4/202310SIMCA-PGettingstarted.pptWorksetwizard12/18/202210SIMCAutotransformvariables
Totransformallvariablesifanyneeded,markthecheckbox1/4/202311SIMCA-PGettingstarted.pptAutotransformvariables
TotraAutomaticcreationofclassesforclassificationordiscrimination1/4/202312SIMCA-PGettingstarted.pptAutomaticcreationofclassesSelectionandFitofmodel1/4/202313SIMCA-PGettingstarted.pptSelectionandFitofmodel12/1Reportwriter
Walksyouthroughthemodelresultswithinterpretation:File|GenerateReport1/4/202314SIMCA-PGettingstarted.pptReportwriter
WalksyouthrouStepsinUsingSIMCA-P,AdvancedModeStartanewprojectandimportthedatasetExploreandpreprocessthedataMakeworkingcopyofselecteddata(workset)formodelbuildingSpecifymodeltypeandfitittotheworksetReviewfit(plots,diagnostics,coefficients,etc.)PredictionsGenerateReport1/4/202315SIMCA-PGettingstarted.pptStepsinUsingSIMCA-P,Advanc1a.FileNew
StartinganewprojectSelectthedatafilecontainingtherawdataoftheprojectdirectory,filetype(XLS,DIF,TXT,…..),filenameAWizardopens(seenextpage)allowingyoutospecify(optionally)therowcontainingtheVariablenames,and(optionally)thecolumnswiththeObs.NumbersandNamesHere(Commands)youcanalsodoadditionalthingssuchastransposingtheinputdatamatrixUsesimplemodewithworksetwizardAtthelastWizardpage,youcan(optionally)specifyanothernameanddirectoryfortheproject.AmapofthemissingdataisshownTheWizardfinishesandputsyouintheSimca-windowAstartingworkset(M1,alldata,allX-s,UV-scaled)isready1/4/202316SIMCA-PGettingstarted.ppt1a.FileNew
Startinganewpr1b.ThesecondscreenoftheWizard1/4/202317SIMCA-PGettingstarted.ppt1b.ThesecondscreenoftheW2.LookingatthedataWiththedatasettableopen(Datasetedit):QuickInfo(bothvarandobswindowscanbeopen)variablesobservationsMovingthecursorinthedatasettableupanddown,orsidewise,changesthedisplayedvariableandobservationInthequickinfooptionsyoucanspecifywhatyouwanttolookat(histograms,auto-correlations,…),aswellaswhichitemsshouldbethebasisfortheplots1/4/202318SIMCA-PGettingstarted.ppt2.LookingatthedataWiththeViewvariablesorObservations,Trim,etc.
QuickInfo1/4/202319SIMCA-PGettingstarted.pptViewvariablesorObservations3.Prepareaworkcopy:TheWorkset
SimpleModewithguidance,orAdvancedModeInWorkset,youprepareaworkingcopyofthepartofthedatayouwillanalyze,i.e.,useasthebasisofyourmodel.Hereyouspecifytransformation,scaling,androlesofvariables(XorYorexcluded).Also,youselecttheobservations(your“trainingset”).Youcanstartwiththepreviousworkset(Workset/Newasmodelxx)andthenmodifyit,e.g.,excludingobservations.WhateveryoudoinWorksetdoesNOTtouchtherawdataNotethatoutliersarejustspecifiedas“notincluded”inthenextworkset(the“polished”data).OutliersareNEVERremovedfromtherawdataset.1/4/202320SIMCA-PGettingstarted.ppt3.Prepareaworkcopy:TheWoWorkset:twoModes,SimpleandAdvanced1/4/202321SIMCA-PGettingstarted.pptWorkset:twoModes,Simpleand4.Analysis
FittheModeltotheWorksetDataEithermenu“Analysis/Autofit”orFastButtonAmodelwithappropriatenumberofcomponentsisfoundIfnothinghappens,getthetwofirstcomponents
(alsomenuorfastbutton)Atableappearsshowingthemodel,componentbycomponent.Morecomponentscanbeadded(menuorfastbutton)Doubleclickonamodeltospecifyatitle1/4/202322SIMCA-PGettingstarted.ppt4.Analysis
FittheModeltot5.Plotresults
Analysis/menu(orfastbuttons)Summary/X/Y-OverviewshowsR2andQ2forallvar.sScores–scatterplot,t1-t2andt1-u1&t2-u2(PLS)Loadings–scatterplot(p1-p2froPCA,wc1-wc2forPLS)DistancetoModel–lineplotContributionplotstointerpretinterestingobservations,e.g.outliers,jumps,…Forallplots,therightmousebutton,propertiesallowschoiceofplotmarkers,andmoreThegraphicaltoolboxallowsfurthermodifications1/4/202323SIMCA-PGettingstarted.ppt5.Plotresults
Analysis/men6a.Outlierswereseeninthescoreplot
(welloutsidetheHotellingellipse)Startanotherworkset (eitherfromWorkset/Newasmodelxx,orusingthegraphicaltool-boxtoremoveoutliersfromthescoreplot)NotethatoutliersshouldNOTbedeletedfromthedatabyEdit/DatasetWhenthenewworksetisall-right,returnto“4.Analysis”tofitanewmodeltothenewworkset (fastbuttonorAnalysis/Autofit)1/4/202324SIMCA-PGettingstarted.ppt6a.Outlierswereseeninthe6b.Nooutlierswereseeninthescoreplots
(ortheyhavebeenexcluded,andthescoreplotsnowlookall-right)Now,interpretthemodelLookat“patterns”,trends,etc.,inthescoreplotsInspecttheloadingplotstointerprettheabovepatternsLookatDModXWhatdothesepatternssayabouttheobjectiveoftheinvestigation?1/4/202325SIMCA-PGettingstarted.ppt6b.NooutlierswereseenintAnalysisAdvisortounderstandandinterpretmodelresults1/4/202326SIMCA-PGettingstarted.pptAnalysisAdvisortounderstand7.Predictions
NewData,PredictionSetUnderPredictions,specifythesetofobservationsforwhichpredictionswillbemade,thepredictionsetNewdatacanbereadinasasecondarydataset (File/Import)andpredictionscanbemadeforthesePredictionset/ComplementWS,givesapredictionsetwiththoseobservationsthatwerenotinthetrainingsetPredictions/Y-predicted,T-predicted,etc.,calculatesanddisplaysthepredictedvaluesaccordingly1/4/202327SIMCA-PGettingstarted.ppt7.Predictions
NewData,Pred8.Generatethereport,withcustomizabletemplates1/4/202328SIMCA-PGettingstarted.ppt8.Generatethereport,withcUseoftheseslidesYoumayuseanyoralloftheseslidesinyourownpresentations,providedthatyoukeep(anddonotmodify)theUmetricslogoandwebreferenceIfyouhaveanyproblemswiththesoftware,orwithunderstandingofthematerial,pleasee-mailusat
info@1/4/202329SIMCA-PGettingstarted.pptUseoftheseslidesYoumayuseWhatisMultivariateAnalysisMultivariateanalysisisthebestwaytosummarizeadatatableswithmanyvariablesbycreatingafewnewvariablescontainingmostoftheinformation.Thesenewvariablesarethenusedforproblemsolvinganddisplay,i.e.,classification,relationships,controlcharts,andmore.Thenewvariables,thescores,denotedbyt,arecreatedasweightedlinearcombinationsoftheoriginalvariables.Eachobservationshast-values.PCA,thebasicMVmethod,summarizesonedatatable.Plottingthescores(t’s)givesanoverviewoftheobservations(objects)PLSsummarizessimultaneously2datatables(Xthepredictorvariables)and
(Ytheresponsevariables)inordertodeveloparelationshipbetweenthemPCAandPLSarecalledProjectionmethods1/4/202330SIMCA-PGettingstarted.pptWhatisMultivariateAnalysisMWhatisaProjection?
Reductionofdimensionality,modelinlatentvariablesAlgebraicallySummarizestheinformationintheobservationsasafewnew(latent)variablesGeometricallyTheswarmofpointsinaKdimensionalspace
(K=numberofvariables)isapproximatedbya(hyper)planeandthepointsareprojectedonthatplane.1/4/202331SIMCA-PGettingstarted.pptWhatisaProjection?
ReductioNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)t:theXscores;thenewsummarizingvariables(coordinatesinthehyperplaneofX-space)u:theYscoresinPLS;thenewsummarizingvariables(coordinatesinthehyperplaneofY-space,whenYismultidimensional)p:thePCloadings.ThesearetheweightsthatinPCAcombinetheoriginalvariablesinXtoformthenewvariables,scorest.w*:thePLSweights.ThesearetheweightsthatinPLScombinetheoriginalvariablesinXtoformthenewvariables,scorest.c:theweightsusedtocombinetheY'stoformthescoresu.1/4/202332SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)OneComponentconsistsofonetandonep(PCA)ort,p,w,u,c(PLS).ThetotalnumberofcomponentsisA.Model:Thedataareapproximatedbyaplaneorhyperplane,(themodel)withasmanydimensionsascomponentsextracted.DModX:alsocalledDistancetothemodel,isthedistanceofagivenobservationtothemodelplane.T2:Hotelling’sT2,isacombinationofallthescores(t)ofallAcomponents.T2measureshowfarawayanobservationisfromthecenterofaPCorPLSmodel.1/4/202333SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotationR2X:ThefractionofthevariationoftheXvariablesexplainedbythemodel.R2Y:ThefractionofthevariationoftheYvariablesexplainedbythemodel.Q2X:ThefractionofthevariationoftheXvariablespredictedbythemodel.Q2Y:ThefractionofthevariationoftheYvariablespredictedbythemodel.1/4/202334SIMCA-PGettingstarted.pptNotationR2X:ThefractionofMVA–SIMCARoadMap
MethodsavailablePreprocessing;trimmingandWinsorizing(takeawayextremes)PrincipalComponentsAnalysis(PCA;overviewofdata)ProjectiontoLatentStructures(PLS;relationshipsXY)SimcaclassificationPLS-discriminantanalysis(classification)HierarchicalPCAandPLSPredictionsandclassificationofnewdatausinganymodel1/4/202335SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
MethodsaMVA–SIMCARoadMap
Dataset=alldata;Workset=workingcopyofdataWorkmainmenusfromlefttorightandpop-upmenusfromuptodownPlot/Listallowsyoutoplotorlistanythingnon-standard,notfoundunderAnalysis1/4/202336SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
DatasetStepsinusingSIMCA-PusingthewizardStartanewprojectandimportthedatasetUsetheworksetwizardtoguidethroughbuildingtheworksetandfittingthemodelGeneratethereportwritertowalkthroughthemodelresultsandinterpretationWhendisplayingSimca-PplotsalwaysusetheAnalysisadvisertoguideyou.1/4/202337SIMCA-PGettingstarted.pptStepsinusingSIMCA-PusingWorksetwizardonON1/4/202338SIMCA-PGettingstarted.pptWorksetwizardonON12/18/20229Worksetwizard1/4/202339SIMCA-PGettingstarted.pptWorksetwizard12/18/202210SIMCAutotransformvariables
Totransformallvariablesifanyneeded,markthecheckbox1/4/202340SIMCA-PGettingstarted.pptAutotransformvariables
TotraAutomaticcreationofclassesforclassificationordiscrimination1/4/202341SIMCA-PGettingstarted.pptAutomaticcreationofclassesSelectionandFitofmodel1/4/202342SIMCA-PGettingstarted.pptSelectionandFitofmodel12/1Reportwriter
Walksyouthroughthemodelresultswithinterpretation:File|GenerateReport1/4/202343SIMCA-PGettingstarted.pptReportwriter
WalksyouthrouStepsinUsingSIMCA-P,AdvancedModeStartanewprojectandimportthedatasetExploreandpreprocessthedataMakeworkingcopyofselecteddata(workset)formodelbuildingSpecifymodeltypeandfitittotheworksetReviewfit(plots,diagnostics,coefficients,etc.)PredictionsGenerateReport1/4/202344SIMCA-PGettingstarted.pptStepsinUsingSIMCA-P,Advanc1a.FileNew
StartinganewprojectSelectthedatafilecontainingtherawdataoftheprojectdirectory,filetype(XLS,DIF,TXT,…..),filenameAWizardopens(seenextpage)allowingyoutospecify(optionally)therowcontainingtheVariablenames,and(optionally)thecolumnswiththeObs.NumbersandNamesHere(Commands)youcanalsodoadditionalthingssuchastransposingtheinputdatamatrixUsesimplemodewithworksetwizardAtthelastWizardpage,youcan(optionally)specifyanothernameanddirectoryfortheproject.AmapofthemissingdataisshownTheWizardfinishesandputsyouintheSimca-windowAstartingworkset(M1,alldata,allX-s,UV-scaled)isready1/4/202345SIMCA-PGettingstarted.ppt1a.FileNew
Startinganewpr1b.ThesecondscreenoftheWizard1/4/202346SIMCA-PGettingstarted.ppt1b.ThesecondscreenoftheW2.LookingatthedataWiththedatasettableopen(Datasetedit):QuickInfo(bothvarandobswindowscanbeopen)variablesobservationsMovingthecursorinthedatasettableupanddown,orsidewise,changesthedisplayedvariableandobservationInthequickinfooptionsyoucanspecifywhatyouwanttolookat(histograms,auto-correlations,…),aswellaswhichitemsshouldbethebasisfortheplots1/4/202347SIMCA-PGettingstarted.ppt2.LookingatthedataWiththeViewvariablesorObservations,Trim,etc.
QuickInfo1/4/202348SIMCA-PGettingstarted.pptViewvariablesorObservations3.Prepareaworkcopy:TheWorkset
SimpleModewithguidance,orAdvancedModeInWorkset,youprepareaworkingcopyofthepartofthedatayouwillanalyze,i.e.,useasthebasisofyourmodel.Hereyouspecifytransformation,scaling,androlesofvariables(XorYorexcluded).Also,youselecttheobservations(your“trainingset”).Youcanstartwiththepreviousworkset(Workset/Newasmodelxx)andthenmodifyit,e.g.,excludingobservations.WhateveryoudoinWorksetdoesNOTtouchtherawdataNotethatoutliersarejustspecifiedas“notincluded”inthenextworkset(the“polished”data).OutliersareNEVERremovedfromtherawdataset.1/4/202349SIMCA-PGettingstarted.ppt3.Prepareaworkcopy:TheWoWorkset:twoModes,SimpleandAdvanced1/4/202350SIMCA-PGettingstarted.pptWorkset:twoModes,Simpleand4.Analysis
FittheModeltotheWorksetDataEithermenu“Analysis/Autofit”orFastButtonAmodelwithappropriatenumberofcomponentsisfoundIfnothinghappens,getthetwofirstcomponents
(alsomenuorfastbutton)Atableappearsshowingthemodel,componentbycomponent.Morecomponentscanbeadded(menuorfastbutton)Doubleclickonamodeltospecifyatitle1/4/202351SIMCA-PGettingstarted.ppt4.Analysis
FittheModeltot5.Plotresults
Analysis/menu(orfastbuttons)Summary/X/Y-OverviewshowsR2andQ2forallvar.sScores–scatterplot,t1-t2andt1-u1&t2-u2(PLS)Loadings–scatterplot(p1-p2froPCA,wc1-wc2forPLS)DistancetoModel–lineplotContributionplotstointerpretinterestingobservations,e.g.outliers,jumps,…Forallplots,therightmousebutton,propertiesallowschoiceofplotmarkers,andmoreThegraphicaltoolboxallowsfur
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 循证护理与护理教育
- 晨间护理铺床注意事项
- 中药封包护理的科研设计与实施
- 社区护理在健康促进中的作用
- 告别恶作剧课件
- 吸脂培训教学课件
- 吸烟的危害课件
- 现代护理模式与临床实践
- 护理评估中的案例研究
- 听瀑课件教学课件
- 慢性阻塞性肺疾病急性加重期机械通气
- 传染病学智慧树知到课后章节答案2023年下温州医科大学
- 湿热灭菌验证方案及报告
- 工业区位因素及其变化高一地理人教版(2019)必修二
- 2022年5月CATTI英语三级口译实务真题(最全回忆版)
- 画法几何知到章节答案智慧树2023年浙江大学
- 少年宫剪纸社团活动记录
- 生命科学前沿技术智慧树知到答案章节测试2023年苏州大学
- GB/T 19867.1-2005电弧焊焊接工艺规程
- 外科护理学期末试卷3套18p
- 人员出车次数统计表
评论
0/150
提交评论