版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhatisMultivariateAnalysisMultivariateanalysisisthebestwaytosummarizeadatatableswithmanyvariablesbycreatingafewnewvariablescontainingmostoftheinformation.Thesenewvariablesarethenusedforproblemsolvinganddisplay,i.e.,classification,relationships,controlcharts,andmore.Thenewvariables,thescores,denotedbyt,arecreatedasweightedlinearcombinationsoftheoriginalvariables.Eachobservationshast-values.PCA,thebasicMVmethod,summarizesonedatatable.Plottingthescores(t’s)givesanoverviewoftheobservations(objects)PLSsummarizessimultaneously2datatables(Xthepredictorvariables)and
(Ytheresponsevariables)inordertodeveloparelationshipbetweenthemPCAandPLSarecalledProjectionmethods1/4/20231SIMCA-PGettingstarted.pptWhatisMultivariateAnalysisMWhatisaProjection?
Reductionofdimensionality,modelinlatentvariablesAlgebraicallySummarizestheinformationintheobservationsasafewnew(latent)variablesGeometricallyTheswarmofpointsinaKdimensionalspace
(K=numberofvariables)isapproximatedbya(hyper)planeandthepointsareprojectedonthatplane.1/4/20232SIMCA-PGettingstarted.pptWhatisaProjection?
ReductioNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)t:theXscores;thenewsummarizingvariables(coordinatesinthehyperplaneofX-space)u:theYscoresinPLS;thenewsummarizingvariables(coordinatesinthehyperplaneofY-space,whenYismultidimensional)p:thePCloadings.ThesearetheweightsthatinPCAcombinetheoriginalvariablesinXtoformthenewvariables,scorest.w*:thePLSweights.ThesearetheweightsthatinPLScombinetheoriginalvariablesinXtoformthenewvariables,scorest.c:theweightsusedtocombinetheY'stoformthescoresu.1/4/20233SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)OneComponentconsistsofonetandonep(PCA)ort,p,w,u,c(PLS).ThetotalnumberofcomponentsisA.Model:Thedataareapproximatedbyaplaneorhyperplane,(themodel)withasmanydimensionsascomponentsextracted.DModX:alsocalledDistancetothemodel,isthedistanceofagivenobservationtothemodelplane.T2:Hotelling’sT2,isacombinationofallthescores(t)ofallAcomponents.T2measureshowfarawayanobservationisfromthecenterofaPCorPLSmodel.1/4/20234SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotationR2X:ThefractionofthevariationoftheXvariablesexplainedbythemodel.R2Y:ThefractionofthevariationoftheYvariablesexplainedbythemodel.Q2X:ThefractionofthevariationoftheXvariablespredictedbythemodel.Q2Y:ThefractionofthevariationoftheYvariablespredictedbythemodel.1/4/20235SIMCA-PGettingstarted.pptNotationR2X:ThefractionofMVA–SIMCARoadMap
MethodsavailablePreprocessing;trimmingandWinsorizing(takeawayextremes)PrincipalComponentsAnalysis(PCA;overviewofdata)ProjectiontoLatentStructures(PLS;relationshipsXY)SimcaclassificationPLS-discriminantanalysis(classification)HierarchicalPCAandPLSPredictionsandclassificationofnewdatausinganymodel1/4/20236SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
MethodsaMVA–SIMCARoadMap
Dataset=alldata;Workset=workingcopyofdataWorkmainmenusfromlefttorightandpop-upmenusfromuptodownPlot/Listallowsyoutoplotorlistanythingnon-standard,notfoundunderAnalysis1/4/20237SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
DatasetStepsinusingSIMCA-PusingthewizardStartanewprojectandimportthedatasetUsetheworksetwizardtoguidethroughbuildingtheworksetandfittingthemodelGeneratethereportwritertowalkthroughthemodelresultsandinterpretationWhendisplayingSimca-PplotsalwaysusetheAnalysisadvisertoguideyou.1/4/20238SIMCA-PGettingstarted.pptStepsinusingSIMCA-PusingWorksetwizardonON1/4/20239SIMCA-PGettingstarted.pptWorksetwizardonON12/18/20229Worksetwizard1/4/202310SIMCA-PGettingstarted.pptWorksetwizard12/18/202210SIMCAutotransformvariables
Totransformallvariablesifanyneeded,markthecheckbox1/4/202311SIMCA-PGettingstarted.pptAutotransformvariables
TotraAutomaticcreationofclassesforclassificationordiscrimination1/4/202312SIMCA-PGettingstarted.pptAutomaticcreationofclassesSelectionandFitofmodel1/4/202313SIMCA-PGettingstarted.pptSelectionandFitofmodel12/1Reportwriter
Walksyouthroughthemodelresultswithinterpretation:File|GenerateReport1/4/202314SIMCA-PGettingstarted.pptReportwriter
WalksyouthrouStepsinUsingSIMCA-P,AdvancedModeStartanewprojectandimportthedatasetExploreandpreprocessthedataMakeworkingcopyofselecteddata(workset)formodelbuildingSpecifymodeltypeandfitittotheworksetReviewfit(plots,diagnostics,coefficients,etc.)PredictionsGenerateReport1/4/202315SIMCA-PGettingstarted.pptStepsinUsingSIMCA-P,Advanc1a.FileNew
StartinganewprojectSelectthedatafilecontainingtherawdataoftheprojectdirectory,filetype(XLS,DIF,TXT,…..),filenameAWizardopens(seenextpage)allowingyoutospecify(optionally)therowcontainingtheVariablenames,and(optionally)thecolumnswiththeObs.NumbersandNamesHere(Commands)youcanalsodoadditionalthingssuchastransposingtheinputdatamatrixUsesimplemodewithworksetwizardAtthelastWizardpage,youcan(optionally)specifyanothernameanddirectoryfortheproject.AmapofthemissingdataisshownTheWizardfinishesandputsyouintheSimca-windowAstartingworkset(M1,alldata,allX-s,UV-scaled)isready1/4/202316SIMCA-PGettingstarted.ppt1a.FileNew
Startinganewpr1b.ThesecondscreenoftheWizard1/4/202317SIMCA-PGettingstarted.ppt1b.ThesecondscreenoftheW2.LookingatthedataWiththedatasettableopen(Datasetedit):QuickInfo(bothvarandobswindowscanbeopen)variablesobservationsMovingthecursorinthedatasettableupanddown,orsidewise,changesthedisplayedvariableandobservationInthequickinfooptionsyoucanspecifywhatyouwanttolookat(histograms,auto-correlations,…),aswellaswhichitemsshouldbethebasisfortheplots1/4/202318SIMCA-PGettingstarted.ppt2.LookingatthedataWiththeViewvariablesorObservations,Trim,etc.
QuickInfo1/4/202319SIMCA-PGettingstarted.pptViewvariablesorObservations3.Prepareaworkcopy:TheWorkset
SimpleModewithguidance,orAdvancedModeInWorkset,youprepareaworkingcopyofthepartofthedatayouwillanalyze,i.e.,useasthebasisofyourmodel.Hereyouspecifytransformation,scaling,androlesofvariables(XorYorexcluded).Also,youselecttheobservations(your“trainingset”).Youcanstartwiththepreviousworkset(Workset/Newasmodelxx)andthenmodifyit,e.g.,excludingobservations.WhateveryoudoinWorksetdoesNOTtouchtherawdataNotethatoutliersarejustspecifiedas“notincluded”inthenextworkset(the“polished”data).OutliersareNEVERremovedfromtherawdataset.1/4/202320SIMCA-PGettingstarted.ppt3.Prepareaworkcopy:TheWoWorkset:twoModes,SimpleandAdvanced1/4/202321SIMCA-PGettingstarted.pptWorkset:twoModes,Simpleand4.Analysis
FittheModeltotheWorksetDataEithermenu“Analysis/Autofit”orFastButtonAmodelwithappropriatenumberofcomponentsisfoundIfnothinghappens,getthetwofirstcomponents
(alsomenuorfastbutton)Atableappearsshowingthemodel,componentbycomponent.Morecomponentscanbeadded(menuorfastbutton)Doubleclickonamodeltospecifyatitle1/4/202322SIMCA-PGettingstarted.ppt4.Analysis
FittheModeltot5.Plotresults
Analysis/menu(orfastbuttons)Summary/X/Y-OverviewshowsR2andQ2forallvar.sScores–scatterplot,t1-t2andt1-u1&t2-u2(PLS)Loadings–scatterplot(p1-p2froPCA,wc1-wc2forPLS)DistancetoModel–lineplotContributionplotstointerpretinterestingobservations,e.g.outliers,jumps,…Forallplots,therightmousebutton,propertiesallowschoiceofplotmarkers,andmoreThegraphicaltoolboxallowsfurthermodifications1/4/202323SIMCA-PGettingstarted.ppt5.Plotresults
Analysis/men6a.Outlierswereseeninthescoreplot
(welloutsidetheHotellingellipse)Startanotherworkset (eitherfromWorkset/Newasmodelxx,orusingthegraphicaltool-boxtoremoveoutliersfromthescoreplot)NotethatoutliersshouldNOTbedeletedfromthedatabyEdit/DatasetWhenthenewworksetisall-right,returnto“4.Analysis”tofitanewmodeltothenewworkset (fastbuttonorAnalysis/Autofit)1/4/202324SIMCA-PGettingstarted.ppt6a.Outlierswereseeninthe6b.Nooutlierswereseeninthescoreplots
(ortheyhavebeenexcluded,andthescoreplotsnowlookall-right)Now,interpretthemodelLookat“patterns”,trends,etc.,inthescoreplotsInspecttheloadingplotstointerprettheabovepatternsLookatDModXWhatdothesepatternssayabouttheobjectiveoftheinvestigation?1/4/202325SIMCA-PGettingstarted.ppt6b.NooutlierswereseenintAnalysisAdvisortounderstandandinterpretmodelresults1/4/202326SIMCA-PGettingstarted.pptAnalysisAdvisortounderstand7.Predictions
NewData,PredictionSetUnderPredictions,specifythesetofobservationsforwhichpredictionswillbemade,thepredictionsetNewdatacanbereadinasasecondarydataset (File/Import)andpredictionscanbemadeforthesePredictionset/ComplementWS,givesapredictionsetwiththoseobservationsthatwerenotinthetrainingsetPredictions/Y-predicted,T-predicted,etc.,calculatesanddisplaysthepredictedvaluesaccordingly1/4/202327SIMCA-PGettingstarted.ppt7.Predictions
NewData,Pred8.Generatethereport,withcustomizabletemplates1/4/202328SIMCA-PGettingstarted.ppt8.Generatethereport,withcUseoftheseslidesYoumayuseanyoralloftheseslidesinyourownpresentations,providedthatyoukeep(anddonotmodify)theUmetricslogoandwebreferenceIfyouhaveanyproblemswiththesoftware,orwithunderstandingofthematerial,pleasee-mailusat
info@1/4/202329SIMCA-PGettingstarted.pptUseoftheseslidesYoumayuseWhatisMultivariateAnalysisMultivariateanalysisisthebestwaytosummarizeadatatableswithmanyvariablesbycreatingafewnewvariablescontainingmostoftheinformation.Thesenewvariablesarethenusedforproblemsolvinganddisplay,i.e.,classification,relationships,controlcharts,andmore.Thenewvariables,thescores,denotedbyt,arecreatedasweightedlinearcombinationsoftheoriginalvariables.Eachobservationshast-values.PCA,thebasicMVmethod,summarizesonedatatable.Plottingthescores(t’s)givesanoverviewoftheobservations(objects)PLSsummarizessimultaneously2datatables(Xthepredictorvariables)and
(Ytheresponsevariables)inordertodeveloparelationshipbetweenthemPCAandPLSarecalledProjectionmethods1/4/202330SIMCA-PGettingstarted.pptWhatisMultivariateAnalysisMWhatisaProjection?
Reductionofdimensionality,modelinlatentvariablesAlgebraicallySummarizestheinformationintheobservationsasafewnew(latent)variablesGeometricallyTheswarmofpointsinaKdimensionalspace
(K=numberofvariables)isapproximatedbya(hyper)planeandthepointsareprojectedonthatplane.1/4/202331SIMCA-PGettingstarted.pptWhatisaProjection?
ReductioNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)t:theXscores;thenewsummarizingvariables(coordinatesinthehyperplaneofX-space)u:theYscoresinPLS;thenewsummarizingvariables(coordinatesinthehyperplaneofY-space,whenYismultidimensional)p:thePCloadings.ThesearetheweightsthatinPCAcombinetheoriginalvariablesinXtoformthenewvariables,scorest.w*:thePLSweights.ThesearetheweightsthatinPLScombinetheoriginalvariablesinXtoformthenewvariables,scorest.c:theweightsusedtocombinetheY'stoformthescoresu.1/4/202332SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)OneComponentconsistsofonetandonep(PCA)ort,p,w,u,c(PLS).ThetotalnumberofcomponentsisA.Model:Thedataareapproximatedbyaplaneorhyperplane,(themodel)withasmanydimensionsascomponentsextracted.DModX:alsocalledDistancetothemodel,isthedistanceofagivenobservationtothemodelplane.T2:Hotelling’sT2,isacombinationofallthescores(t)ofallAcomponents.T2measureshowfarawayanobservationisfromthecenterofaPCorPLSmodel.1/4/202333SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotationR2X:ThefractionofthevariationoftheXvariablesexplainedbythemodel.R2Y:ThefractionofthevariationoftheYvariablesexplainedbythemodel.Q2X:ThefractionofthevariationoftheXvariablespredictedbythemodel.Q2Y:ThefractionofthevariationoftheYvariablespredictedbythemodel.1/4/202334SIMCA-PGettingstarted.pptNotationR2X:ThefractionofMVA–SIMCARoadMap
MethodsavailablePreprocessing;trimmingandWinsorizing(takeawayextremes)PrincipalComponentsAnalysis(PCA;overviewofdata)ProjectiontoLatentStructures(PLS;relationshipsXY)SimcaclassificationPLS-discriminantanalysis(classification)HierarchicalPCAandPLSPredictionsandclassificationofnewdatausinganymodel1/4/202335SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
MethodsaMVA–SIMCARoadMap
Dataset=alldata;Workset=workingcopyofdataWorkmainmenusfromlefttorightandpop-upmenusfromuptodownPlot/Listallowsyoutoplotorlistanythingnon-standard,notfoundunderAnalysis1/4/202336SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
DatasetStepsinusingSIMCA-PusingthewizardStartanewprojectandimportthedatasetUsetheworksetwizardtoguidethroughbuildingtheworksetandfittingthemodelGeneratethereportwritertowalkthroughthemodelresultsandinterpretationWhendisplayingSimca-PplotsalwaysusetheAnalysisadvisertoguideyou.1/4/202337SIMCA-PGettingstarted.pptStepsinusingSIMCA-PusingWorksetwizardonON1/4/202338SIMCA-PGettingstarted.pptWorksetwizardonON12/18/20229Worksetwizard1/4/202339SIMCA-PGettingstarted.pptWorksetwizard12/18/202210SIMCAutotransformvariables
Totransformallvariablesifanyneeded,markthecheckbox1/4/202340SIMCA-PGettingstarted.pptAutotransformvariables
TotraAutomaticcreationofclassesforclassificationordiscrimination1/4/202341SIMCA-PGettingstarted.pptAutomaticcreationofclassesSelectionandFitofmodel1/4/202342SIMCA-PGettingstarted.pptSelectionandFitofmodel12/1Reportwriter
Walksyouthroughthemodelresultswithinterpretation:File|GenerateReport1/4/202343SIMCA-PGettingstarted.pptReportwriter
WalksyouthrouStepsinUsingSIMCA-P,AdvancedModeStartanewprojectandimportthedatasetExploreandpreprocessthedataMakeworkingcopyofselecteddata(workset)formodelbuildingSpecifymodeltypeandfitittotheworksetReviewfit(plots,diagnostics,coefficients,etc.)PredictionsGenerateReport1/4/202344SIMCA-PGettingstarted.pptStepsinUsingSIMCA-P,Advanc1a.FileNew
StartinganewprojectSelectthedatafilecontainingtherawdataoftheprojectdirectory,filetype(XLS,DIF,TXT,…..),filenameAWizardopens(seenextpage)allowingyoutospecify(optionally)therowcontainingtheVariablenames,and(optionally)thecolumnswiththeObs.NumbersandNamesHere(Commands)youcanalsodoadditionalthingssuchastransposingtheinputdatamatrixUsesimplemodewithworksetwizardAtthelastWizardpage,youcan(optionally)specifyanothernameanddirectoryfortheproject.AmapofthemissingdataisshownTheWizardfinishesandputsyouintheSimca-windowAstartingworkset(M1,alldata,allX-s,UV-scaled)isready1/4/202345SIMCA-PGettingstarted.ppt1a.FileNew
Startinganewpr1b.ThesecondscreenoftheWizard1/4/202346SIMCA-PGettingstarted.ppt1b.ThesecondscreenoftheW2.LookingatthedataWiththedatasettableopen(Datasetedit):QuickInfo(bothvarandobswindowscanbeopen)variablesobservationsMovingthecursorinthedatasettableupanddown,orsidewise,changesthedisplayedvariableandobservationInthequickinfooptionsyoucanspecifywhatyouwanttolookat(histograms,auto-correlations,…),aswellaswhichitemsshouldbethebasisfortheplots1/4/202347SIMCA-PGettingstarted.ppt2.LookingatthedataWiththeViewvariablesorObservations,Trim,etc.
QuickInfo1/4/202348SIMCA-PGettingstarted.pptViewvariablesorObservations3.Prepareaworkcopy:TheWorkset
SimpleModewithguidance,orAdvancedModeInWorkset,youprepareaworkingcopyofthepartofthedatayouwillanalyze,i.e.,useasthebasisofyourmodel.Hereyouspecifytransformation,scaling,androlesofvariables(XorYorexcluded).Also,youselecttheobservations(your“trainingset”).Youcanstartwiththepreviousworkset(Workset/Newasmodelxx)andthenmodifyit,e.g.,excludingobservations.WhateveryoudoinWorksetdoesNOTtouchtherawdataNotethatoutliersarejustspecifiedas“notincluded”inthenextworkset(the“polished”data).OutliersareNEVERremovedfromtherawdataset.1/4/202349SIMCA-PGettingstarted.ppt3.Prepareaworkcopy:TheWoWorkset:twoModes,SimpleandAdvanced1/4/202350SIMCA-PGettingstarted.pptWorkset:twoModes,Simpleand4.Analysis
FittheModeltotheWorksetDataEithermenu“Analysis/Autofit”orFastButtonAmodelwithappropriatenumberofcomponentsisfoundIfnothinghappens,getthetwofirstcomponents
(alsomenuorfastbutton)Atableappearsshowingthemodel,componentbycomponent.Morecomponentscanbeadded(menuorfastbutton)Doubleclickonamodeltospecifyatitle1/4/202351SIMCA-PGettingstarted.ppt4.Analysis
FittheModeltot5.Plotresults
Analysis/menu(orfastbuttons)Summary/X/Y-OverviewshowsR2andQ2forallvar.sScores–scatterplot,t1-t2andt1-u1&t2-u2(PLS)Loadings–scatterplot(p1-p2froPCA,wc1-wc2forPLS)DistancetoModel–lineplotContributionplotstointerpretinterestingobservations,e.g.outliers,jumps,…Forallplots,therightmousebutton,propertiesallowschoiceofplotmarkers,andmoreThegraphicaltoolboxallowsfur
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采茶工安全协议书范本
- 补贴金分配协议书
- 本合同采用计税方法
- 保险行业协会 比例合同范本
- 骨折的应急预案
- 山西省2024八年级物理上册第六章质量与密度第2节密度课件新版新人教版
- 新生儿窒息亚低温治疗
- 《船用眼环》规范
- 贵州省贵阳市观山湖区美的中学2024-2025学年度七年级上学期期中质量监测生物学试卷
- 上门美甲相关行业投资方案
- 河南省内乡县面向社会公开招考25名看护队员【共500题含答案解析】模拟检测试卷
- GB/T 3452.4-2020液压气动用O形橡胶密封圈第4部分:抗挤压环(挡环)
- GB/T 3362-2005碳纤维复丝拉伸性能试验方法
- GB/T 18029.8-2008轮椅车第8部分:静态强度、冲击强度及疲劳强度的要求和测试方法
- 面试评估表(技术研发类)
- 《圆的周长和数学阅读》设计
- 建筑CAD-信息化教学大赛
- 文书档案管理培训课件
- 英语辅优补差工作记录表
- Camtasia-Studio使用教程课件
- 消防控制室记录六本记录(标准文本)
评论
0/150
提交评论