材料物理性能6_第1页
材料物理性能6_第2页
材料物理性能6_第3页
材料物理性能6_第4页
材料物理性能6_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.2MAGNETICFIELDCLASSIFICATIONSIngeneral,magneticmaterialsareclassifiedintofivedistinctgroups;diamagnetic,paramagnetic,ferromagnetic,ferrimagnetic.Table8.2providesasummaryofthemagneticpropertiesoftheseclassesofmaterials.1Typicaldiamagneticmaterialshaveamagneticsusceptibilitythatisnegativeandsmall.forexample,thesiliconcrystalisdiamagneticwithWhenadiamagneticsubstancesuchasasiliconcrystalisplacedinamagneticfieldmagnetizationvectorMinthematerialisintheoppositedirectiontotheappliedfieldandtheresultingfieldBwithinthematerialislessthan.Asubstanceexhibitsdiamagnetismwhenevertheconstituentatomsinthematerialhaveclosedsubshellsandshells..

28.2.2PARAMAGNETSMParamagneticmaterialshaveasmallpositivemagneticsusceptibility.Forexample,oxygengasisparamagneticwithΧm=2.1×10-6atatmosphericpressureandroomtemperature.Eachoxygenmoleculehasanetmagneticdipolemomentμmol.Intheabsenceofanappliedfield,thesemolecularmomentsarerandomlyorientedduetotherandomcollisionsofthemolecules,asdepictedinFigure8.13a.Themagnetizationofthegasiszero.Inthepresenceofanappliedfield,themolecularmagneticmomentstakevariousalignmentswiththefield,asillustratedinFigure8.13b.ThedegreeofalignmentofμmolwiththeappliedfieldandhencemagnetizationMincreaseswiththestrengthoftheappliedfieldμ0H.Whenaparamagneticsubstanceisplacedinanonuniformmagneticfield,theinducedmagnetizationMisalongBandthereisanetforcetowardgreaterfields.Forexample,whenliquidoxygenispouredclosetoastrongmagnet,asdepictedinFigure8.14,theliquidbecomesattractedtothemagnet.38.2.3FERROMAGNETISMFerromagneticmaterialsuchasironcanpossesslargepermanentmagnetizationsevenintheabsenceofanappliedmagneticfieldThemagneticsusceptibilityΧmistypicallypositiveandverylarge(eveninfinite)and,further,dependsontheappliedfieldintensity.TherelationshipbetweenthemagnetizationMandtheappliedmagneticfieldμ0Hishighlynonlinear.4Theoriginofferromagnetismisthequantummechanicalexchangeinteraction(discussedlater)betweentheconstituentatomsthatresultsinregionsofthematerialpossessingpermanentmagnetization.Figure8.15depictsaregionoftheFecrystal,calledamagneticdomainthathasanetmagnetizationvectorMduetothealignmentofthemagneticmomentsofallFeatomsinthisregion.Thiscrystaldomainhasmagneticorderingasalltheatomicmagneticmomentshavebeenalignedparalleltoeachother.FerromagnetismoccursbelowacriticaltemperaturecalledtheCurietemperatureTC.AttemperaturesaboveTC,ferromagnetismislostandmaterialbecomesparamagnetic.58.2.5FERRIMAGNETISM

Ferrimagneticmaterialssuchasferrets(e.g.,Fe­3O4)exhibitmagneticbehaviorsimilartoferromagnetismbelowacriticaltemperaturecalledtheCurietemperatureTc.AboveTctheybecomeparamagnetic.Theoriginofferrimagnetismisbasedonmagneticordering,asschematicallyillustratedinFigure8.17.AllAatomshavetheirspinsalignedinonedirectionandallBatomshavetheirspinsalignedintheoppositedirection.AsthemagneticmomentofanAatomisgreaterthanthatofaBatomic,thereisnetmagnetizationbyelectriccurrentMinthecrystal.Sinceferrimagneticmaterialsaretypicallynonconductingandthereforedonotsufferfromeddycurrentlosses,theyarewidelyusedinhigh-frequencyelectronicsapplications.6Allusefulmagneticmaterialsinelectricalengineeringareinvariablyferromagneticorferromagnetic.78.3FERROMAGNETISMORIGINANDTHEEXCHANGEINTERACTIONThetransitionmetalsiron,cobalt,andnickelareallferromagneticatroomtemperature.Therareearthmetalsgadoliniumanddysprosiumareferromagneticbelowroomtemperature.Ferromagneticmaterialscanexhibitpermanentmagnetizationevenintheabsenceofanappliedfield;thatis,theypossessasusceptibilitythatisinfinite.Inamagnetizedironcrystal,alltheatomicmagneticmomentsarealignedinthesamedirectional,asillustratedinFigure8.15,wherethemomentsinthiscasehaveallbeenalignedalongthe[100]direction,whichgivesnetmagnetizationalongthisdirection.8Itmaybethoughtthatthereasonforthealignmentofthemomentsisthemagneticforcesbetweenthemoments,justasbarmagnetswilltendtoalignheadtotailinanSNSN…fashion.Thisisnothingto,however,thecause,asthemagneticpotentialenergyofinteractionissmall,indeedsmallerthanthethermalenergy.TwoelectronsparalleltheirspinsnotbecauseofthedirectmagneticinteractionbetweenthespinmagneticmomentsbutbecauseofthePauliExclusionPrincipleandtheelectrostaticinteractionenergy.Togethertheyconstitutewhatisknownasanexchangeinteraction,whichforcestwoelectronstotakemsandmlvaluesthatresultintheminimumofelectrostaticenergy.9Fromquantummechanics,theexchangeinteractioncanberepresentedintermsofanexchangeenergyas[8.21]whereS1andS2arethespinangularmomentaofthetwoelectronsandJeisanumericalquantitycalledtheexchangeintegralthatinvolvesintegratingthewavefunctionswithvariouspotentialenergyinteractiondistance.Forthemajorityofsolids,Jeisnegative,sotheexchangeenergyisnegativeifS1andS2areintheoppositedirections,thatis,thespinsareantiparallel(aswefoundincovalentbonding).Thisistheantiferromagneticstate.ForFe,Co,andNi,however,Jeispositive.EexisthennegativeifS1andS2areparallel.Spinsofthe3delectronsontheFeatomsthereforespontaneouslyaligninthesamedirectiontoreducetheexchangeenergy.Thisspontaneousmagnetizationisthephenomenonofferromagnetism.108.4SATURATIONMAGNETIZATIONANDCURIETEMPERATURE

ThemaximummagnetizationinaferromagnetwhenalltheatomicmagneticmomentshavebeenalignedasmuchaspossibleiscalledthesaturationmagnetizationMsat.Intheironcrystal,forexample,thiscorrespondstoeachFeatomwithaneffectivespinmagneticmomentof2.2T.Asweincreasethetemperature,latticevibrationsbecomemoreenergetic,whichleadtoafrequentdisruptionofthealignmentsofthespins.Thespinscannotalignperfectlywitheachotherasthetemperatureincreasesduetolatticevibrationsrandomlyagitatingtheindividualspins.Whenanenergeticlatticevibrationpassesthroughaspinsite,theenergyinthevibrationmaybesufficienttodisorientatethespinoftheatom.TheferromagneticbehaviordisappearsatacriticaltemperaturecalledtheCurietemperature,denotedbyTc,whenthethermalenergyoflatticevibrationsinthecrystalcanovercomethepotentialenergyoftheexchangeinteractionandhencedestroythespinalignments.AbovetheCurietemperature,thecrystalbehavesasifitwereparamagnetic.ThesaturationmagnetizationMsat,therefore,decreasesfromitsmaximumvalueMsat(0)atabsolutezerooftemperaturetozeroattheCurietemperature..11Figure8.21showsthatdependenceofMsatonthetemperaturewhenMsathasbeennormalizedtoMsat(0)andthetemperatureisthereducedtemperature,thatis,T/Tc.AtT/Tc=1,Msat=0.Whenplottedinthisway,theferromagnetscobaltandnickelfollowcloselytheobservedbehaviorforiron.WeshouldnotethatsinceforironTc=1043K,atroomtemperature,T/Tc=0.29andMsatisveryclosetoitsvalueatMsat(0).SinceattheCurietemperature,thethermalenergy,oftheorderofkTc,issufficienttoovercometheenergyoftheexchangeinteractionEexthatalignsthespins,wecantakekTcasanorderofmagnitudeestimateofEex.Foriron,Eexis~0.09eVandforcobaltthisis~0.1eV.128.4MAGNETICDOMAINS:FERROMAGNETICMATERIALS

8.4.1MagneticDomains

Asinglecrystalofirondoesnotnecessarilypossessanetpermanentmagnetizationintheabsenceofanappliedfield.IfamagnetizedpieceofironisheatedtoatemperatureaboveitsCurietemperatureandthenallowedtocoolintheabsenceofamagneticfield,itwillpossessnonetmagnetization.Thereasonfortheabsenceofnetmagnetizationisduetotheformationofmagneticdomainsthateffectivelycanceleachother,asdiscussedbelow.Amagneticdomainisaregionofthecrystalinwhichallthespinmagneticmomentsarealignedtoproduceamagneticmomentinonedirectiononly.13Figure8.22ashowsasinglecrystalofironthathasapermanentmagnetizationasaresultofferromagnetism(aligningofallatomicspins).Thecrystalislikeabarmagnetwithmagneticfieldlinesaroundit.Asweknow,thereispotentialenergy(PE),calledmagnetostaticenergy,storedinamagneticfield,andwecanreducethisenergyintheexternalfieldbydividingthecrystalintotwodomainswherethemagnetizationsareintheoppositedirections,asshowninFigure8.22b.14Theexternalmagneticfieldlinesarereducedandthereisnowlesspotentialenergystoredinthemagneticfield.Thereareonlyfieldlinesattheends.Thisarrangementisenergeticallyfavorablebecausethemagnetostaticenergyhasbeenreducedbydecreasingtheexternalfield15ThewallinFigure8.22bisa180°wallinasmuchasthemagnetizationthroughthewallisrotatedby180°.Itisapparentthatthewallregionwheretheneighbouringatomicspinschangetheirrelativedirection(ororientation)fromonedomaintotheneighboringonehashigherPEthanthebulkofthedomain,wherealltheatomicspinsarealigned.16Aswewillshowbelow,thedomainwallisnotsimplyoneatomicspacingbuthasafinitethickness,whichforironistypicallyoftheorderof0.1μm,orseveralhundredatomicspacings.Theexcessenergyinthewallincreaseswiththeareaofthewall.178.5.2MAGNETOCRYSTALLINEANISOTROPY

Ferromagneticcrystalscharacteristically­exhibitmagneticanisotropy,whichmeansthatthemagneticpropertiesaredifferentalongdifferentcrystaldirections.Inthecaseofiron(BCC),thespinsinadomainarealmosteasilyalignedinanyofthesix[100]typedirections,collectivelylabelledas‹100›,andcorrespondtothesixedgesofthecubicunitcell.Theexchangeinteractionsaresuchthatspinmagneticmomentsaremosteasilyalignedwitheachotheriftheyallpointinoneofthesix‹100›directions.Thus‹100›directionsintheironcrystalconstitutetheeasydirectionsformagnetization.18WhenamagnetizingfieldHalonga[100]directionisapplied,asillustratedinFigure8.23aandb,domainwallsmigratetoallowthosedomains(e.g.,A)withmagnetizationsalongHtogrowattheexpenseofthosedomains(e.g.,B)withmagnetizationsopposingH.TheobservedMversusHbehaviourisshowninFigure8.24.Magnetizationrapidlyincreasesandsaturateswithanappliedfieldoflessthan0.01T.

19Ontheotherhand,ifwewanttomagnetizethecrystalalongthe[111]directionbyapplyingafieldalongthisdirection,thenwehavetoapplyastrongerfieldthanthatalong[100].ThisisclearlyshowninFigure8.24,wheretheresultingmagnetizationalong[111]issmallerthanthatalong[100]forthesamemagnitudeofappliedfield.Indeed,saturationisreachedatanappliedfieldthatisaboutafactorof4greaterthanthatalong[100].The[111]directionintheironcrystalisconsequentlyknownastheharddirection.TheMversusHbehaviouralong[100],[110],and[111]directionsinanironcrystalandtheassociatedanisotropyareshowninFigure8.24.20Itisapparentthatthemagnetizationofthecrystalalong[100]needstheleastenergy,whereasthatalong[111]consumesthegreatestenergy.TheexcessenergyrequiredtomagnetizeaunitvolumeofacrystalinaparticulardirectionwithrespecttothatintheeasydirectioniscalledthemagnetocrystallineanisotropyenergyandisdenotedbyK.Foriron,theanisotropyenergyiszerofor[100]andlargestforthe[111]direction,about48kJ.m-3or3.5×10-6evperatom.Forcobalt,whichhastheHCPcrystalstructure,theanisotropyenergyisatleastanorderofmagnitudegreater.Table8.4summarizestheeasyandharddirections,andtheanisotropyenergyKfortheharddirection21Werecallthatthespinmagneticmomentsrotateacrossadomainwall.Aschematicillustrationofthestructureofatypical180°Blochwall,betweentwodomainsAandB,isdepictedinFigure8.25.Itcanbeseenthattheneighbouringspinmagneticmomentsarerotatedgradually,andoverseveralhundredatomicspacingsthemagneticmomentreachesarotationof180°8.5.3DOMAINWALLS22Example8.4Figure8.26showsthecontributionsoftheexchangeandanisotropyenergies,and,tothetotalBlochwallenergyasafunctionofwallthicknessδ.Itisclearthatexchangeandanisotropyenergieshaveopposite(orconflicting)requirementsonthewallthickness.Thereis,however,anoptimumthicknessthatminimizestheBlochwallenergy,thatis,athicknessthatbalancestherequirementsofexchangeandanisotropyforces.Iftheinteratomicspacingisa,thentherewouldbeatomiclayersinthewall.Sincethespinmomentanglechangesby180°acrossδ,wecancalculatetherelativespinorientationsofadjacentatomiclayers,andhencewecanfindtheexactcontributionsofexchangeandanisotropyenergies.Wedonotneedtheexactmathematics,butthefinalresultisthatthepotentialenergyperunitareaofthewallisapproximately:23Thefirsttermontherightsistheexchangeenergycontributions(proportionalto/),andthesecondistheanisotropyenergycontribution(proportionalto);bothhavethefeatureswediscussed.Showthattheminimumenergyoccurswhenthewallhasthethickness24TakingwhereistheCurietemperature,andforiron,K=50KJm-3,anda=0.3nm,estimatethethicknessofaBlochwallanditsenergyperunitarea.25Thedomainstructureineachgrainwilldependonthesizeandshapeofthegrainand,tosomeextent,onthemagnetizationsinneighboringgrains.Althoughverysmallgrainsperhapssmallerthan0.1µm,maybesingledomains,inmostcasesthemajorityofthegrainswillhavemanydomains.Overall,thestructurewillpossessnonetmagnetization,providedthatitwasnotpreviouslysubjectedtoanappliedmagneticfield.WecanassumethatthecomponentwasheatedtoatemperatureabovetheCuriepointandthenallowedtocooltoroomtemperaturewithoutanappliedfield.26Supposethatwestartapplyingaverysmallexternalmagneticfield(µ0H)alongsomedirection,whichwecanarbitrarilylabelas+x.Thedomainwallswithinvariousgrainsbegintomovesmalldistances,andfavorablyorienteddomains(thosewithacomponentofMalong+x)growalittlelargerattheexpenseof

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论