版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2MAGNETICFIELDCLASSIFICATIONSIngeneral,magneticmaterialsareclassifiedintofivedistinctgroups;diamagnetic,paramagnetic,ferromagnetic,ferrimagnetic.Table8.2providesasummaryofthemagneticpropertiesoftheseclassesofmaterials.1Typicaldiamagneticmaterialshaveamagneticsusceptibilitythatisnegativeandsmall.forexample,thesiliconcrystalisdiamagneticwithWhenadiamagneticsubstancesuchasasiliconcrystalisplacedinamagneticfieldmagnetizationvectorMinthematerialisintheoppositedirectiontotheappliedfieldandtheresultingfieldBwithinthematerialislessthan.Asubstanceexhibitsdiamagnetismwhenevertheconstituentatomsinthematerialhaveclosedsubshellsandshells..
28.2.2PARAMAGNETSMParamagneticmaterialshaveasmallpositivemagneticsusceptibility.Forexample,oxygengasisparamagneticwithΧm=2.1×10-6atatmosphericpressureandroomtemperature.Eachoxygenmoleculehasanetmagneticdipolemomentμmol.Intheabsenceofanappliedfield,thesemolecularmomentsarerandomlyorientedduetotherandomcollisionsofthemolecules,asdepictedinFigure8.13a.Themagnetizationofthegasiszero.Inthepresenceofanappliedfield,themolecularmagneticmomentstakevariousalignmentswiththefield,asillustratedinFigure8.13b.ThedegreeofalignmentofμmolwiththeappliedfieldandhencemagnetizationMincreaseswiththestrengthoftheappliedfieldμ0H.Whenaparamagneticsubstanceisplacedinanonuniformmagneticfield,theinducedmagnetizationMisalongBandthereisanetforcetowardgreaterfields.Forexample,whenliquidoxygenispouredclosetoastrongmagnet,asdepictedinFigure8.14,theliquidbecomesattractedtothemagnet.38.2.3FERROMAGNETISMFerromagneticmaterialsuchasironcanpossesslargepermanentmagnetizationsevenintheabsenceofanappliedmagneticfieldThemagneticsusceptibilityΧmistypicallypositiveandverylarge(eveninfinite)and,further,dependsontheappliedfieldintensity.TherelationshipbetweenthemagnetizationMandtheappliedmagneticfieldμ0Hishighlynonlinear.4Theoriginofferromagnetismisthequantummechanicalexchangeinteraction(discussedlater)betweentheconstituentatomsthatresultsinregionsofthematerialpossessingpermanentmagnetization.Figure8.15depictsaregionoftheFecrystal,calledamagneticdomainthathasanetmagnetizationvectorMduetothealignmentofthemagneticmomentsofallFeatomsinthisregion.Thiscrystaldomainhasmagneticorderingasalltheatomicmagneticmomentshavebeenalignedparalleltoeachother.FerromagnetismoccursbelowacriticaltemperaturecalledtheCurietemperatureTC.AttemperaturesaboveTC,ferromagnetismislostandmaterialbecomesparamagnetic.58.2.5FERRIMAGNETISM
Ferrimagneticmaterialssuchasferrets(e.g.,Fe3O4)exhibitmagneticbehaviorsimilartoferromagnetismbelowacriticaltemperaturecalledtheCurietemperatureTc.AboveTctheybecomeparamagnetic.Theoriginofferrimagnetismisbasedonmagneticordering,asschematicallyillustratedinFigure8.17.AllAatomshavetheirspinsalignedinonedirectionandallBatomshavetheirspinsalignedintheoppositedirection.AsthemagneticmomentofanAatomisgreaterthanthatofaBatomic,thereisnetmagnetizationbyelectriccurrentMinthecrystal.Sinceferrimagneticmaterialsaretypicallynonconductingandthereforedonotsufferfromeddycurrentlosses,theyarewidelyusedinhigh-frequencyelectronicsapplications.6Allusefulmagneticmaterialsinelectricalengineeringareinvariablyferromagneticorferromagnetic.78.3FERROMAGNETISMORIGINANDTHEEXCHANGEINTERACTIONThetransitionmetalsiron,cobalt,andnickelareallferromagneticatroomtemperature.Therareearthmetalsgadoliniumanddysprosiumareferromagneticbelowroomtemperature.Ferromagneticmaterialscanexhibitpermanentmagnetizationevenintheabsenceofanappliedfield;thatis,theypossessasusceptibilitythatisinfinite.Inamagnetizedironcrystal,alltheatomicmagneticmomentsarealignedinthesamedirectional,asillustratedinFigure8.15,wherethemomentsinthiscasehaveallbeenalignedalongthe[100]direction,whichgivesnetmagnetizationalongthisdirection.8Itmaybethoughtthatthereasonforthealignmentofthemomentsisthemagneticforcesbetweenthemoments,justasbarmagnetswilltendtoalignheadtotailinanSNSN…fashion.Thisisnothingto,however,thecause,asthemagneticpotentialenergyofinteractionissmall,indeedsmallerthanthethermalenergy.TwoelectronsparalleltheirspinsnotbecauseofthedirectmagneticinteractionbetweenthespinmagneticmomentsbutbecauseofthePauliExclusionPrincipleandtheelectrostaticinteractionenergy.Togethertheyconstitutewhatisknownasanexchangeinteraction,whichforcestwoelectronstotakemsandmlvaluesthatresultintheminimumofelectrostaticenergy.9Fromquantummechanics,theexchangeinteractioncanberepresentedintermsofanexchangeenergyas[8.21]whereS1andS2arethespinangularmomentaofthetwoelectronsandJeisanumericalquantitycalledtheexchangeintegralthatinvolvesintegratingthewavefunctionswithvariouspotentialenergyinteractiondistance.Forthemajorityofsolids,Jeisnegative,sotheexchangeenergyisnegativeifS1andS2areintheoppositedirections,thatis,thespinsareantiparallel(aswefoundincovalentbonding).Thisistheantiferromagneticstate.ForFe,Co,andNi,however,Jeispositive.EexisthennegativeifS1andS2areparallel.Spinsofthe3delectronsontheFeatomsthereforespontaneouslyaligninthesamedirectiontoreducetheexchangeenergy.Thisspontaneousmagnetizationisthephenomenonofferromagnetism.108.4SATURATIONMAGNETIZATIONANDCURIETEMPERATURE
ThemaximummagnetizationinaferromagnetwhenalltheatomicmagneticmomentshavebeenalignedasmuchaspossibleiscalledthesaturationmagnetizationMsat.Intheironcrystal,forexample,thiscorrespondstoeachFeatomwithaneffectivespinmagneticmomentof2.2T.Asweincreasethetemperature,latticevibrationsbecomemoreenergetic,whichleadtoafrequentdisruptionofthealignmentsofthespins.Thespinscannotalignperfectlywitheachotherasthetemperatureincreasesduetolatticevibrationsrandomlyagitatingtheindividualspins.Whenanenergeticlatticevibrationpassesthroughaspinsite,theenergyinthevibrationmaybesufficienttodisorientatethespinoftheatom.TheferromagneticbehaviordisappearsatacriticaltemperaturecalledtheCurietemperature,denotedbyTc,whenthethermalenergyoflatticevibrationsinthecrystalcanovercomethepotentialenergyoftheexchangeinteractionandhencedestroythespinalignments.AbovetheCurietemperature,thecrystalbehavesasifitwereparamagnetic.ThesaturationmagnetizationMsat,therefore,decreasesfromitsmaximumvalueMsat(0)atabsolutezerooftemperaturetozeroattheCurietemperature..11Figure8.21showsthatdependenceofMsatonthetemperaturewhenMsathasbeennormalizedtoMsat(0)andthetemperatureisthereducedtemperature,thatis,T/Tc.AtT/Tc=1,Msat=0.Whenplottedinthisway,theferromagnetscobaltandnickelfollowcloselytheobservedbehaviorforiron.WeshouldnotethatsinceforironTc=1043K,atroomtemperature,T/Tc=0.29andMsatisveryclosetoitsvalueatMsat(0).SinceattheCurietemperature,thethermalenergy,oftheorderofkTc,issufficienttoovercometheenergyoftheexchangeinteractionEexthatalignsthespins,wecantakekTcasanorderofmagnitudeestimateofEex.Foriron,Eexis~0.09eVandforcobaltthisis~0.1eV.128.4MAGNETICDOMAINS:FERROMAGNETICMATERIALS
8.4.1MagneticDomains
Asinglecrystalofirondoesnotnecessarilypossessanetpermanentmagnetizationintheabsenceofanappliedfield.IfamagnetizedpieceofironisheatedtoatemperatureaboveitsCurietemperatureandthenallowedtocoolintheabsenceofamagneticfield,itwillpossessnonetmagnetization.Thereasonfortheabsenceofnetmagnetizationisduetotheformationofmagneticdomainsthateffectivelycanceleachother,asdiscussedbelow.Amagneticdomainisaregionofthecrystalinwhichallthespinmagneticmomentsarealignedtoproduceamagneticmomentinonedirectiononly.13Figure8.22ashowsasinglecrystalofironthathasapermanentmagnetizationasaresultofferromagnetism(aligningofallatomicspins).Thecrystalislikeabarmagnetwithmagneticfieldlinesaroundit.Asweknow,thereispotentialenergy(PE),calledmagnetostaticenergy,storedinamagneticfield,andwecanreducethisenergyintheexternalfieldbydividingthecrystalintotwodomainswherethemagnetizationsareintheoppositedirections,asshowninFigure8.22b.14Theexternalmagneticfieldlinesarereducedandthereisnowlesspotentialenergystoredinthemagneticfield.Thereareonlyfieldlinesattheends.Thisarrangementisenergeticallyfavorablebecausethemagnetostaticenergyhasbeenreducedbydecreasingtheexternalfield15ThewallinFigure8.22bisa180°wallinasmuchasthemagnetizationthroughthewallisrotatedby180°.Itisapparentthatthewallregionwheretheneighbouringatomicspinschangetheirrelativedirection(ororientation)fromonedomaintotheneighboringonehashigherPEthanthebulkofthedomain,wherealltheatomicspinsarealigned.16Aswewillshowbelow,thedomainwallisnotsimplyoneatomicspacingbuthasafinitethickness,whichforironistypicallyoftheorderof0.1μm,orseveralhundredatomicspacings.Theexcessenergyinthewallincreaseswiththeareaofthewall.178.5.2MAGNETOCRYSTALLINEANISOTROPY
Ferromagneticcrystalscharacteristicallyexhibitmagneticanisotropy,whichmeansthatthemagneticpropertiesaredifferentalongdifferentcrystaldirections.Inthecaseofiron(BCC),thespinsinadomainarealmosteasilyalignedinanyofthesix[100]typedirections,collectivelylabelledas‹100›,andcorrespondtothesixedgesofthecubicunitcell.Theexchangeinteractionsaresuchthatspinmagneticmomentsaremosteasilyalignedwitheachotheriftheyallpointinoneofthesix‹100›directions.Thus‹100›directionsintheironcrystalconstitutetheeasydirectionsformagnetization.18WhenamagnetizingfieldHalonga[100]directionisapplied,asillustratedinFigure8.23aandb,domainwallsmigratetoallowthosedomains(e.g.,A)withmagnetizationsalongHtogrowattheexpenseofthosedomains(e.g.,B)withmagnetizationsopposingH.TheobservedMversusHbehaviourisshowninFigure8.24.Magnetizationrapidlyincreasesandsaturateswithanappliedfieldoflessthan0.01T.
19Ontheotherhand,ifwewanttomagnetizethecrystalalongthe[111]directionbyapplyingafieldalongthisdirection,thenwehavetoapplyastrongerfieldthanthatalong[100].ThisisclearlyshowninFigure8.24,wheretheresultingmagnetizationalong[111]issmallerthanthatalong[100]forthesamemagnitudeofappliedfield.Indeed,saturationisreachedatanappliedfieldthatisaboutafactorof4greaterthanthatalong[100].The[111]directionintheironcrystalisconsequentlyknownastheharddirection.TheMversusHbehaviouralong[100],[110],and[111]directionsinanironcrystalandtheassociatedanisotropyareshowninFigure8.24.20Itisapparentthatthemagnetizationofthecrystalalong[100]needstheleastenergy,whereasthatalong[111]consumesthegreatestenergy.TheexcessenergyrequiredtomagnetizeaunitvolumeofacrystalinaparticulardirectionwithrespecttothatintheeasydirectioniscalledthemagnetocrystallineanisotropyenergyandisdenotedbyK.Foriron,theanisotropyenergyiszerofor[100]andlargestforthe[111]direction,about48kJ.m-3or3.5×10-6evperatom.Forcobalt,whichhastheHCPcrystalstructure,theanisotropyenergyisatleastanorderofmagnitudegreater.Table8.4summarizestheeasyandharddirections,andtheanisotropyenergyKfortheharddirection21Werecallthatthespinmagneticmomentsrotateacrossadomainwall.Aschematicillustrationofthestructureofatypical180°Blochwall,betweentwodomainsAandB,isdepictedinFigure8.25.Itcanbeseenthattheneighbouringspinmagneticmomentsarerotatedgradually,andoverseveralhundredatomicspacingsthemagneticmomentreachesarotationof180°8.5.3DOMAINWALLS22Example8.4Figure8.26showsthecontributionsoftheexchangeandanisotropyenergies,and,tothetotalBlochwallenergyasafunctionofwallthicknessδ.Itisclearthatexchangeandanisotropyenergieshaveopposite(orconflicting)requirementsonthewallthickness.Thereis,however,anoptimumthicknessthatminimizestheBlochwallenergy,thatis,athicknessthatbalancestherequirementsofexchangeandanisotropyforces.Iftheinteratomicspacingisa,thentherewouldbeatomiclayersinthewall.Sincethespinmomentanglechangesby180°acrossδ,wecancalculatetherelativespinorientationsofadjacentatomiclayers,andhencewecanfindtheexactcontributionsofexchangeandanisotropyenergies.Wedonotneedtheexactmathematics,butthefinalresultisthatthepotentialenergyperunitareaofthewallisapproximately:23Thefirsttermontherightsistheexchangeenergycontributions(proportionalto/),andthesecondistheanisotropyenergycontribution(proportionalto);bothhavethefeatureswediscussed.Showthattheminimumenergyoccurswhenthewallhasthethickness24TakingwhereistheCurietemperature,andforiron,K=50KJm-3,anda=0.3nm,estimatethethicknessofaBlochwallanditsenergyperunitarea.25Thedomainstructureineachgrainwilldependonthesizeandshapeofthegrainand,tosomeextent,onthemagnetizationsinneighboringgrains.Althoughverysmallgrainsperhapssmallerthan0.1µm,maybesingledomains,inmostcasesthemajorityofthegrainswillhavemanydomains.Overall,thestructurewillpossessnonetmagnetization,providedthatitwasnotpreviouslysubjectedtoanappliedmagneticfield.WecanassumethatthecomponentwasheatedtoatemperatureabovetheCuriepointandthenallowedtocooltoroomtemperaturewithoutanappliedfield.26Supposethatwestartapplyingaverysmallexternalmagneticfield(µ0H)alongsomedirection,whichwecanarbitrarilylabelas+x.Thedomainwallswithinvariousgrainsbegintomovesmalldistances,andfavorablyorienteddomains(thosewithacomponentofMalong+x)growalittlelargerattheexpenseof
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- IT外包服务合同担保条款详解
- 车站候车室雨棚工程方案
- 扬州2024年08版小学5年级下册英语第2单元测验卷
- 电子商务运营(第二版) 课件 项目8 直通车专员操作
- 交通工程质量管理与售后服务方案
- 2024-2025学年河南省天一大联考高三上学期检测(二)化学试题及答案
- 交通运输领域应急救援信息化预案
- 煤矿职业健康管理与安全方案
- 青少年法治教育路径优化研究
- 新能源发电系统中储能系统的应用分析
- 2024年国家公务员考试《行测》真题卷(副省级)答案及解析
- 江苏省南京市秦淮区2023-2024学年八年级上学期期中语文试题及答案
- 2024年个人车位租赁合同参考范文(三篇)
- (完整版)新概念英语第一册单词表(打印版)
- 签申工作准假证明中英文模板
- 员工履历表(标准样本)
- 2024年山东省济南市中考数学真题(含答案)
- 山东省青岛市黄岛区2023-2024学年六年级上学期期中语文试卷
- 二手门市销售合同范本
- 新能源发电技术 课件 第一章-新能源发电概述
- 2025届高考语文一轮复习:文言文概括和分析 课件
评论
0/150
提交评论