




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各式中,从左到右的变形是因式分解的是()A.3x+3y+1=3(x+y)+1 B.a2﹣2a+1=(a﹣1)2C.(m+n)(m﹣n)=m2﹣n2 D.x(x﹣y)=x2﹣xy2.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为克,再称得剩余电线的质量为克,那么原来这卷电线的总长度是()A.米 B.(+1)米 C.(+1)米 D.(+1)米3.函数的自变量的取值范围是()A. B. C.且 D.4.下列命题的逆命题是真命题的是()A.同位角相等 B.对顶角相等C.等边对等角 D.全等三角形的面积相等5.若等腰三角形的周长为,其中一边为,则该等腰三角形的底边长为()A. B.或 C.或 D.6.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是15cm2,AB=9cm,BC=6cm,则DE=()cm.A.1 B.2 C.3 D.47.如图,AD//BC,点E是线段AB的中点,DE平分,BC=AD+2,CD=7,则的值等于()A.14 B.9 C.8 D.58.如图,在和中,,,于点,点在上,过作,使,连接交于点,当时,下列结论:①;②;③;④.其中正确的有().A.1个 B.2个 C.3个 D.4个9.一个三角形三个内角的度数的比是.则其最大内角的度数为()A. B. C. D.10.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于()A.120° B.125° C.130° D.135°二、填空题(每小题3分,共24分)11.点P(4,5)关于x轴对称的点的坐标是___________.12.如图,,,.给出下列结论:①;②;③;④.其中正确结论的序号是__________.13.如图,AH⊥BC交BC于H,那么以AH为高的三角形有_____个.14.当a=2018时,分式的值是_____.15.阅读材料后解决问题,小明遇到下面一个问题:计算.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用方差公式解决问题,具体解法如下:请你根据小明解决问题的方法,试着解决以下的问题:__________.16.中国高铁再创新高,2019年全国高铁总里程将突破35000公里,约占世界高铁总里程的,稳居世界第一,将35000用科学计数法表示为__________.17.如图,已知雷达探测器在一次探测中发现了两个目标A,B,其中A的位置可以表示成(60°,6),那么B可以表示为____________,A与B的距离为____________18.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.三、解答题(共66分)19.(10分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD;(1)已知∠A=85°,∠ACE=115°,求∠B度数;(2)求证:AB=DE.20.(6分)如图1,在平面直角坐标系中,直线:与轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.21.(6分)计算(1)(2)(3)解方程组:22.(8分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图.请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?(无原图)23.(8分)先化简,再求值(1),其中,(2),其中24.(8分)如图,已知和点、求作一点,使点到、的距离相等且.请作出点.(用直尺、圆规作图,不写作法,保留作图痕迹)25.(10分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?26.(10分)如图,△ABC是等腰直角三角形,且∠ACB=90°,点D是AB边上的一点(点D不与A,B重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE,AE.(1)求证:△CBD≌△CAE;(2)若AD=4,BD=8,求DE的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据因式分解的意义,可得答案.【详解】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】把多项式化为几个整式的积的形式,即是因式分解2、B【分析】首先根据1米长的电线,称得它的质量为a克,则剩余电线的质量为b克的长度是米,根据题意可求得总长度.【详解】剩余电线的长度为米,所以总长度为(+1)米.故选B3、C【分析】根据二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0,列出不等式即可得出结论.【详解】解:由题意可知:解得:且故选C.【点睛】此题考查的是求自变量的取值范围,掌握二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0是解决此题的关键.4、C【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【详解】A、原命题的逆命题为:相等是同错角,不正确;B、原命题的逆命题为:相等的角为对顶角,不正确;C、原命题的逆命题为:等角对等边,正确;D、原命题的逆命题为:面积相等的三角形全等,不正确;
故选:C.【点睛】此题主要考查学生对命题与逆命题的理解及真假命题的判断能力,对选项要逐个验证,判断命题真假时可举反例说明.5、C【分析】分底为7cm和腰为7cm两种情况进行讨论,再根据三角形的三边关系进行验证.【详解】分两种情况讨论:①当底为7cm时,此时腰长为4cm和4cm,满足三角形的三边关系;②当腰为7cm时,此时另一腰为7cm,则底为1cm,满足三角形的三边关系;综上所述:底边长为1cm或7cm.故选:C.【点睛】本题考查了等腰三角形的性质及三角形的三边关系,分两种情况讨论是解答本题的关键.6、B【分析】过D作DF⊥BC于F,由角平分线的性质得DE=DF,根据即可解得DE的长.【详解】过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB于E,∴DF=DE,∵△ABC的面积是15cm2,AB=9cm,BC=6cm,又,∴,解得:DE=2,故选:B.【点睛】本题主要考查角平分线的性质定理、三角形的面积公式,熟练掌握角平分线的性质定理,作出相应的辅助线是解答本题的关键.7、A【分析】延长DE,CB交于点F,通过ASA证明,则有,然后利用角平分线的定义得出,从而有,则通过和解出BC,AD的值,从而答案可解.【详解】延长DE,CB交于点F∵点E是线段AB的中点,在和中,∵DE平分解得故选:A.【点睛】本题主要考查全等三角形的判定及性质,角平分线的定义,等腰三角形的性质,能够找出是解题的关键.8、C【分析】利用直角三角形两锐角互余以及三角形外角的性质,结合已知可求得∠FAG=∠FGA=75,利用等角对等边证明①正确;在和中,分别利用30度角的性质求得EF=2AE=4DE,证明②正确;同样利用30度角的性质求得,,证明③正确;过A作AH⊥EF于H,证得,从证得,④错误.【详解】∵FA⊥EA,∠F=30,∴∠AEF=60,∵∠BAC=90,AB=AC,AD⊥BC,∴∠DAC=∠C=45,AD=DC=BD,∵∠EAC=15,∴∠FAG=90-15=75,∠DAE=45-15=30,∴∠FGA=∠AEF+∠EAC=60+15=75,∴∠FAG=∠FGA=75,∴AF=FG,①正确;∵在中,∠ADE=90,∠DAE=30,∴AE=2DE,,∵在中,∠EAF=90,∠F=30,∴EF=2AE=4DE,②正确;∴,③正确;过A作AH⊥EF于H,在和中,;∴,∴AD=AH,在中,∠AHG=90,∴,∴,∴,④错误;综上,①②③正确,共3个.故选:C.【点睛】本题考查了等腰直角三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,利用30度所对直角边等于斜边一半,邻边是对边的倍是解题的关键.9、B【分析】先将每份的角度算出来,再乘以5即可得出最大内角的角度.【详解】180°÷(2+3+5)=180°÷10=18°.5×18°=90°.故选B.【点睛】本题考查三角形内角的计算,关键在于利用内角和算出平分的每份角度.10、B【解析】在△AOC和△BOD中,∴△AOC≌△BOD(SSS),∴∠C=∠D,又∵∠D=30°,∴∠C=30°,又∵在△AOC中,∠A=95°,∴∠AOC=(180-95-30)°=55°,又∵∠AOC+∠AOB=180°(邻补角互补),∴∠AOB=(180-55)°=125°.故选B.二、填空题(每小题3分,共24分)11、(4,-5)【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P'的坐标是(x,﹣y),进而得出答案.【详解】点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故答案为:(4,﹣5).【点睛】本题考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解答本题的关键.12、①②③【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD和DN所在的三角形全等,也不能用其它方法证出CD=DN.【详解】∵∠E=∠F=90∘,∠B=∠C,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘,∴∠EAB=∠FAC,∴∠EAB−CAB=∠FAC−∠CAB,即∠1=∠2,∴①正确;在△EAB和△FAC中∴△EAB≌△FAC,∴BE=CF,AC=AB,∴②正确;在△ACN和△ABM中∴△ACN≌△ABM,∴③正确;∵根据已知不能推出CD=DN,∴④错误;【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断.13、1【解析】∵AH⊥BC交BC于H,而图中有一边在直线CB上,且以A为顶点的三角形有1个,∴以AH为高的三角形有1个,故答案为:1.14、1【分析】首先化简分式,然后把a=2018代入化简后的算式,求出算式的值是多少即可.【详解】当a=2018时,,=,=,=,=a+1,=2018+1,=1.故答案为1.【点睛】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.15、【分析】原式变形后,利用平方差公式计算即可求出值.【详解】解:根据题意得:,故答案为:【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16、3.5×1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】35000=3.5×1.故答案为:3.5×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、【分析】按已知可得,表示一个点,距离是自内向外的环数,角度是所在列的度数,据此进行判断即可得解.【详解】∵(a,b)中,b表示目标与探测器的距离;a表示以正东为始边,逆时针旋转后的角度,∴B可以表示为.∵A、B与雷达中心的连线间的夹角为150°-60°=90°,∴AB==故填:(1).(2)..【点睛】本题考查了坐标确定位置,解题时由已知条件正确确定A、B的位置及勾股定理的应用是解决本题的关键.18、50°.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题(共66分)19、(1)30°;(2)见解析【分析】(1)直接利用三角形的外角性质求解即可;(2)由平行线的性质可得∠ACB=∠DFE,∠B=∠E,然后根据ASA可证△ABC≌△DEF,进而可得结论.【详解】(1)解:∵∠A=85°,∠ACE=115°,∠B+∠A=∠ACE,∴∠B=115°-85°=30°;(2)证明:∵AC∥FD,AB∥ED,∴∠ACB=∠DFE,∠B=∠E,∵FB=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点睛】本题考查了三角形的外角性质和全等三角形的判定和性质,属于基础题型,熟练掌握全等三角形的判定和性质是解题关键.20、(1);(2);(3)或;(4)t最小值为秒【分析】(1)把B(2,m)代入直线l解析式可求出m的值,即可得B点坐标,设直线BC的解析式为y=kx+b,把B、C两点坐标代入可求得k、m的值,即可的直线BC的解析式;(2)过点O作交BC于点D,可知S△ABC=S△ABD,,联立直线BC与OD的解析式解得交点D的坐标即可;(3)分别讨论P点在y轴的负半轴和正半轴时两种情况,①P点在y轴的负半轴时,作于点N,可证明△AOP△PNM1,设OP=NM1=m,ON=m-2,则M1的坐标为(m,2-m),代入BC解析式即可求出m的值,进而可得M1坐标;②当P点在y轴正半轴时,同①解法可求出M2的坐标,综上即可得答案;(4)作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,可求出AG、AQ、BQ的长,根据时间t=+=BE+EK≥BT,利用面积法求出BT的值即可.【详解】(1)解:将点B(2,m)代入得m=3∴设直线BC解析式为得到∴∴直线BC解析式为(2)如图,过点O作交BC于点D∴S△ABC=S△ABD,∴直线OD的解析式为y=x,∴解得(3)①如图,当P点在y轴负半轴时,作于点N,∵直线AB与x轴相交于点A,∴点A坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM1=90°∴∠PAO=∠PNM1,又∵AP=PM1,∠POA=∠PNM1=90°∴△AOP△PNM1,∴PN=OA=2,设OP=NM1=m,ON=m-2∴解得∴②如图,作于点H可证明△AOP△PHM2设HM2=n,OH=n-2∴解得∴M2(,)∴综上所述或M2(,).(4)如图,作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,∵∠CAQ=45°BG⊥x轴,B(2,3)∴AG=4,∴AQ=4,BQ=7,t==BE+EK≥BT,由面积法可得:∴×4×BT=×7×4,∴BT=因此t最小值为.【点睛】本题考查一次函数的几何应用,待定系数法求一次函数解析式及面积公式的应用,熟练掌握相关知识是解题关键.21、(1)0;(2)1;(3)【分析】(1)在进行实数运算时,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.(2)先利用平方差公式和二次根式的除法法则运算,然后合并即可;(3)方程组利用加减消元法即可解答.【详解】(1)解:=3-4-2-(-3)=-1+1=0(2)解:原式=2-3+=-1+2=1;(3)解:将方程组整理成一般式得:①+②,得:4x=12解得x=3,将x=3代人①,得:3+4y=14,解得:y=所以方程组的解为.【点睛】此题考查实数的运算,零指数幂,负整数指数幂,平方差公式,二次根式的混合运算,解二元一次方程组,解题关键在于掌握运算法则.22、(1)(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类240(本),科普类:210(本),文学类:60(本),其它类:90(本).【解析】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本),文学类:600×10%=60(本),其它类:600×15%=90(本).23、(1)3;(2)【分析】(1)根据去括号与合并同类项的法则将代数式化简,然后把给定的值代入计算即可.(2)根据分式的混合运算法则把原式化简,把给定的值代入计算即可.【详解】(1)解:原式=,当时,上式=;(2)解:原式=当时,上式=.【点睛】本题考查的是分式的化简求值、整式的混合运算,解题的关键是注意运算顺序以及符号的处理.24、答案见解析【分析】作出∠ECD的平分线,线段AB的垂直平分线,两线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北海市检测合同范例
- 代建房屋租赁合同范本
- 企业消防合同范本
- 主体变更合同范本
- 个人建设工程合同范本
- 农村房屋验收合同范本
- 办证代理合同范本
- 代理土地合同范本
- 乳胶卷材供货合同范本
- 加工辅料采购合同范本
- 渗漉法胡鹏讲解
- 【道 法】学会自我保护+课件-2024-2025学年统编版道德与法治七年级下册
- 2025届高考英语读后续写提分技巧+讲义
- 买房协议书样板电子版
- 2024年无锡科技职业学院高职单招数学历年参考题库含答案解析
- 河南航空港发展投资集团有限公司2025年社会招聘题库
- 绵阳市高中2022级(2025届)高三第二次诊断性考试(二诊)语文试卷(含答案)
- 常州初三强基数学试卷
- 《吞咽障碍膳食营养管理规范》(T-CNSS 013-2021)
- 《经济学的研究方法》课件
- 仁爱七年级下册英语教学计划
评论
0/150
提交评论