版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.点A(-3,4)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列运算正确的是:()A. B. C. D.3.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t4.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40° B.50°C.60° D.75°5.如图,已知为等腰三角形,,将沿翻折至为的中点,为的中点,线段交于点,若,则()A. B. C. D.6.已知一次函数y=kx+b的图象经过一、二、三象限,则b的值可以是()A.-1 B.-2 C.0 D.27.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. B. C. D.8.若是一个完全平方式,则k的值为()A. B.18 C. D.9.下列各式中,是一元一次不等式的是()A.5+4>8 B.2x-1C.2x≤5 D.-3x≥010.下列式子中,属于最简二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知,,则______.12.使有意义的的取值范围为_______.13.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.14.如图,在平面直角坐标系中,OA=OB=,AB=.若点A坐标为(1,2),则点B的坐标为_____.15.如图,AH⊥BC交BC于H,那么以AH为高的三角形有_____个.16.如图,在等边中,D、E分别是边AB、AC上的点,且,则______17.一个边形,从一个顶点出发的对角线有______条,这些对角线将边形分成了______个三角形,这个边形的内角和为__________.18.若a+b=﹣3,ab=2,则_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A,点A的横坐标为3,直线l2交y轴于点B,且OA=OB.(1)试求直线l2的函数表达式;(2)若将直线l1沿着x轴向左平移3个单位,交y轴于点C,交直线l2于点D.试求△BCD的面积.20.(6分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.21.(6分)在中,,,、分别是的高和角平分线.求的度数.22.(8分)已知2是的平方根,是的立方根,求的值.23.(8分)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.24.(8分)补充下列证明,并在括号内填上推理依据.已知:如图,在中,平分交于点,交于点,且,求证:.证明:,().,.(),________________.平分,(),,,________________,.().25.(10分)某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市前该瓜农随机摘下了10个成熟的西瓜,称重如下:西瓜质量(单位:千克)5.45.35.04.84.44.0西瓜数量(单位:个)123211(1)这10个西瓜质量的众数和中位数分别是和;(2)计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约多少千克?26.(10分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.
参考答案一、选择题(每小题3分,共30分)1、B【解析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.
故选:B.【点睛】本题主要考查点的坐标的性质,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、D【分析】根据幂的运算法则和完全平方公式逐项计算可得出正确选项.【详解】解:A.,故错误;B.,故错误;C.,故错误;D.,正确.故选:D【点睛】本题考查了幂的运算和完全平方公式,熟练掌握幂的运算法则是解题关键.3、B【解析】根据因式分解的意义,可得答案.【详解】A.分解不正确,故A不符合题意;B.把一个多项式转化成几个整式积的形式,故B符合题意;C.是整式的乘法,故C不符合题意;D.没把一个多项式转化成几个整式积的形式,故D不符合题意.故选B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4、B【解析】分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.详解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°-∠1=50°.故选B.点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.5、D【分析】连接,由三角形的中线将三角形面积分成相等的两部分,用m表示出△AEG的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接,设,则,∵为的中点,,∴故选:D.【点睛】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.6、D【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选D.【点睛】此题考查一次函数图象与系数的关系,解题关键在于掌握其性质.7、C【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.8、C【分析】根据完全平方公式形式,这里首末两项是和9这两个数的平方,那么中间一项为加上或减去和9乘积的2倍.【详解】解:是一个完全平方式,首末两项是和9这两个数的平方,,解得.故选:C.【点睛】本题是完全平方公式的应用,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积得2倍的符号,有正负两种情况,避免漏解.9、C【解析】A.∵5+4>8不含未知数,故不是一元一次不等式;B.∵2x-1不含不等号,故不是一元一次不等式;C.2x-5≤1是一元一次不等式;D.∵-3x≥0的分母中含未知数,,故不是一元一次不等式;故选C.点睛:本题考查一元一次不等式的识别,注意理解一元一次不等式的三个特点:①不等式的两边都是整式;②只含1个未知数;③未知数的最高次数为1次.10、B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】A.=,不是最简二次根式,故该选项不符合题意,B.是最简二次根式,故该选项符合题意,C.被开方数中含分母,不是最简二次根式,故该选项不符合题意,D.=,被开方数中含分母,不是最简二次根式,故该选项不符合题意,故选:B.【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题(每小题3分,共24分)11、1【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【详解】解:∵,,
∴原式,故答案为:1.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.12、x≤【分析】根据被开方数大于等于0列式进行计算即可得解.【详解】根据题意得,2-4x≥0,
解得x≤.
故答案为:x≤.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握二次根式的被开方数是非负数.13、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.14、(﹣2,1).【分析】作BN⊥x轴,AM⊥x轴,根据题意易证得△BNO≌△OMA,再根据全等三角形的性质可得NB=OM,NO=AM,又已知A点的坐标,即可得B点的坐标.【详解】解:作BN⊥x轴,AM⊥x轴,∵OA=OB=,AB=,∴AO2+OB2=AB2,∴∠BOA=90°,∴∠BON+∠AOM=90°,∵∠BON+∠NBO=90°,∴∠AOM=∠NBO,∵∠AOM=∠NBO,∠BNO=∠AMO,BO=OA,∴△BNO≌△OMA,∴NB=OM,NO=AM,∵点A的坐标为(1,2),∴点B的坐标为(-2,1).故答案为(-2,1).【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.15、1【解析】∵AH⊥BC交BC于H,而图中有一边在直线CB上,且以A为顶点的三角形有1个,∴以AH为高的三角形有1个,故答案为:1.16、1【分析】根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°,进而利用四边形内角和解答即可.【详解】解:是等边三角形,≌.,,,故答案为1.【点睛】此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.17、【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,边形有个顶点,和它不相邻的顶点有个,因而从边形的一个顶点出发的对角线有条,把边形分成个三角形.由分成三角形个数即可求出多边形内角和.【详解】解:从边形的一个顶点出发的对角线有条,可以把边形划分为个三角形,这个边形的内角和为.故答案为:,,.【点睛】此题考查了多边形的对角线的知识,多边形的问题可以通过作对角线转化为三角形的问题解决,是转化思想在多边形中的应用.18、5【分析】将a+b=﹣3两边分别平方,然后利用完全平方公式展开即可求得答案.【详解】∵a+b=﹣3,∴(a+b)2=(﹣3)2,即a2+2ab+b2=9,又∵ab=2,∴a2+b2=9-2ab=9-4=5,故答案为5.【点睛】本题考查了根据完全平方公式的变形求代数式的值,熟练掌握完全平方公式的结构特征是解题的关键.三、解答题(共66分)19、(1)y=x-10;(2)【分析】(1)把点A的横坐标代入进行解答即可;
(2)根据直线的平移特点进行解答即可.【详解】解:(1)根据题意,点A的横坐标为3,代入直线l1:y=x中,得点A的纵坐标为4,即点A(3,4);
即OA=5,又|OA|=|OB|,即OB=10,且点B位于y轴上,
即得B(0,-10);
将A、B两点坐标代入直线l2中,得4=3k+b;
-10=b;
解之得,k=,b=-10;
即直线l2的解析式为y=x-10;
(2)根据题意,平移后的直线l1的直线方程为y=(x+3)=x+4,即点C的坐标为(0,4);
联立线l2的直线方程,解得x=,y=,即点D(,),又点B(0,-10),如图所示:
故△BCD的面积S=.【点睛】此题考查一次函数与几何变换问题,关键是根据直线的平移特点进行解答.20、(1)y=-x+6;(2)12;(3)或.【分析】(1)利用待定系数法,即可求得函数的解析式;(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.【详解】(1)设直线AB的函数解析式是y=kx+b,根据题意得:,解得:,∴直线AB的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,∴;(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,解得:,即直线OA的解析式是:,∵△ONC的面积是△OAC面积的,∴点N的横坐标是,当点N在OA上时,x=1,y=,即N的坐标为(1,),当点N在AC上时,x=1,y=5,即N的坐标为(1,5),综上所述,或.【点睛】本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.21、∠DAE=20°【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的定义求出∠BAE=∠BAC,而∠BAD=90°-∠B,然后利用∠DAE=∠BAE-∠BAD进行计算即可.【详解】解:在△ABC中,∠B=80°,∠C=40°
∴∠BAC=180°-∠B-∠C=180°-80°-40°=60°
∵AE是的角平分线
∴∠BAE=∠BAC=30°,
∵AD是△ABC的高,
∴∠ADB=90°
∴在△ADB中,∠BAD=90°-∠B=90°-80°=10°
∴∠DAE=∠BAE-∠BAD=30°-10°=20°.【点睛】本题考查三角形内角和定理,角平分线的定义,三角形的高线.熟练掌握相关定义,计算出角的度数是解题关键.22、【分析】根据平方根、立方根的定义列出方程组,即可求解.【详解】解:由题意可知①+②可得,【点睛】此题主要考查实数的性质,解题的关键是熟知平方根、立方根的定义.23、(1)①60°;②4;③150°;(2)OA2+2OB2=OC2时,∠ODC=90°,理由详见解析.【分析】(1)①△ABO旋转后AB与BC重合,根据旋转的性质可知∠ABC是旋转角,由△ABC是等边三角形即可知答案.②由旋转的性质可知OB=BD,根据旋转角是60°可知∠OBD=60°即可证明△BOD是等边三角形,进而求出OD的长.③根据OD=4,OC=5,CD=3可证明△OCD是直角三角形,根据△BOD是等边三角形即可求出∠BDC得度数.(2)根据旋转的性质可知旋转角为90°,可证明三角形BOD是等腰直角三角形,进而求出OD=OB,根据△OCD是直角三角形即可知答案.【详解】(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.【点睛】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年规范格式员工解聘协议范本
- 2024年培训学校业务承接协议典范
- 2024年资格认证代理挂靠服务协议
- 2024年简化场地租赁协议范例
- 2024年水产养殖协议范本及条款详解
- DB11∕T 1694-2019 生活垃圾收集运输节能规范
- 2024年设备分期付款购销协议典范
- 2024年房产租赁业务协议参考
- 2024年停车场租赁模板协议
- 2024年度定制墙体租赁服务协议
- 朝花夕拾读书分享会
- 心肌病和心肌炎课件
- 突发事件应急处理知识培训
- 糖尿病专科护士考试试题
- 人工智能概论-人工智能概述
- 乡村旅游财务分析策划方案
- 高校学生事务管理1
- (中职)ZZ030植物病虫害防治赛项规程(7月19日更新)
- 2024年国能包神铁路集团有限责任公司招聘笔试参考题库附带答案详解
- 非甾体类抗炎药课件
- 出入库登记管理制度
评论
0/150
提交评论