




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列命题是假命题的是()A.所有的实数都可用数轴上的点表示B.三角形的一个外角等于它的两个内角的和C.方差能反映一组数据的波动大小D.等角的补角相等2.如图,AB//EF//DC,∠ABC=90°,AB=DC,则图中的全等三角形有A.1对 B.2对 C.3对 D.4对3.的算术平方根为()A. B. C. D.4.下列图形中,由∠1=∠2,能得到AB∥CD的是()A. B.C. D.5.如图,在等腰中,的垂直平分线交于点,若,,则的周长是()A. B. C. D.6.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2)7.以下列各组数为三角形的边长,能构成直角三角形的是()A.2、3、4 B.5、5、6 C.2、、 D.、、8.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(-2,-3) B.(2,-3) C.(-3,2) D.(2,3)9.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表如下:捐款(元)35810人数2■■31表格中捐款5元和8元的人数不小心被墨水污染看不清楚.若设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得方程组()A. B.C. D.二、填空题(每小题3分,共24分)11.等腰三角形的腰长为,底边长为,则其底边上的高为_________.12.如图,△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),将△ABC关于y轴轴对称变换得到△A1B1C1,再将△A1B1C1关于直线x=2(即过(2,0)垂直于x轴的直线)轴对称变换得到△A2B2C2,再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4…,按此规律继续变换下去,则点A10的坐标为_____.13.若在实数范围内有意义,则的取值范围是______.14.若是关于、的二元一次方程,则__.15.如图,平面直角坐标系中的两个点,过C作轴于B,过B作交y轴于D,且,分别平分,,则的度数为______________________.16.如图,点P、M、N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PV⊥AC于点N,若AB=12cm,求CM的长为______cm.17.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为__________________.18.已知,,则______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,一次函数的图象过点A(4,1)与正比例函数()的图象相交于点B(,3),与轴相交于点C.(1)求一次函数和正比例函数的表达式;(2)若点D是点C关于轴的对称点,且过点D的直线DE∥AC交BO于E,求点E的坐标;(3)在坐标轴上是否存在一点,使.若存在请求出点的坐标,若不存在请说明理由.20.(6分)甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到到达乙地前,何时轿车在货车前30千米.21.(6分)如图,已知点和点,点和点是轴上的两个定点.(1)当线段向左平移到某个位置时,若的值最小,求平移的距离.(2)当线段向左或向右平移时,是否存在某个位置,使四边形的周长最小?请说明如何平移?若不存在,请说明理由.22.(8分)年月日是我国第六个南京大屠杀难者国家公祭日,某校决定开展铭记历史珍爱和平”主题演讲比赛,其中八(1)班要从甲、乙两名参赛选手中择优推荐一人参加校级决赛,他们预赛阶段的各项得分如下表:项目选手演讲内容演讲技巧仪表形象甲乙(1)如果根据三项成绩的平均分确定推荐人选,请通过计算说明甲、乙两人谁会被推荐(2)如果根据演讲内容、演讲技、巧仪表形象按的比例确定成绩,请通过计算说明甲、乙两人谁会被推荐,并对另外一位同学提出合理的建议.23.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.24.(8分)从宁海县到某市,可乘坐普通列车或高铁,已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车的平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.25.(10分)先化简再求值:,其中x=.26.(10分)如图,已知一次函数y=mx+3的图象经过点A(2,6),B(n,-3).求:(1)m,n的值;(2)△OAB的面积.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据实数和数轴的一一对应关系,可知所有的实数都可用数轴上的点表示,故是真命题;根据三角形的外角的性质,可知三角形的一个外角等于它的不相邻两内角的和,故是假命题;根据方差的意义,可知方差越大,波动越大,方差越小,波动越小,故是真命题;根据互为补角的两角的性质,可知等角的补角相等,故是真命题.故选B.2、C【分析】根据平行的性质及全等三角形的判定方法来确定图中存在的全等三角形共有三对:△ABC≌△DCB,△ABE≌△CDE,△BFE≌△CFE.再分别进行证明.【详解】解:①△ABC≌△DCB
∵AB∥EF∥DC
∴∠ABC=∠DCB
∵AB=DC,BC=BC
∴△ABC≌△DCB;
②△ABE≌△CDE
∵∠ABE=∠DCE,∠AEB=∠DEC,AB=DC
∴△ABE≌△CDE;
③△BFE≌△CFE
∵BE=EC,EF=EF,∠BEF=∠CEF
∴△BFE≌△CFE.
∴图中的全等三角形共有3对.故答案为:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、B【解析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.4、C【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、由∠1+∠2=180°,得到AB∥CD,故本选项错误;B、∠1=∠2不能判定AB∥CD,故本选项错误;C、由∠1=∠2,得AB∥CD,符合平行线的判定定理,故本选项正确;D、∠1=∠2不能判定AB∥CD,故本选项错误.故选:C.【点睛】本题主要主要考查平行线的判定定理,掌握“同位角相等,两直线平行”,“内错角相等,两直线平行”,“同旁内角互补,两直线平行”是解题的关键.5、A【解析】先根据线段垂直平分线的性质得到AD=DC,由是等腰三角形得到AB=AC,则AD+DB=DC+DB=AC,再根据△BCD的周长=BC+BD+CD即可进行解答.【详解】∵是线段AC的垂直平分线,
∴AD=DC,∵是等腰三角形,
∴,∴AD+CD=BD+CD=AC,∵,,
∴△BCD的周长.故选:A.【点睛】本题考查的是线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两个端点的距离相等是解题的关键.6、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.7、D【分析】根据勾股定理的逆定理得出选项A、B、C不能构成直角三角形,D选项能构成直角三角形,即可得出结论.【详解】解:A、22+32≠42,不符合勾股定理的逆定理,故不正确;B、52+52≠62,不符合勾股定理的逆定理,故不正确;C、22+()2≠()2,不符合勾股定理的逆定理,故不正确;D、()2+()2=()2,符合勾股定理的逆定理,能构成直角三角形,故正确.故选D.【点睛】本题考查了勾股定理的逆定理;在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8、A【分析】在平面直角坐标系中,关于x轴对称的点横坐标不变,纵坐标变为相反数.【详解】解:点P(-2,3)关于x轴对称的点的坐标(-2,-3).故选A.9、D【解析】试题分析:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.考点:角平分线的性质.10、A【分析】设捐款5元的有x名同学,捐款8元的有y名同学,利用八(1)班学生人数为45得出一个方程,然后利用共捐款400元得出另外一个方程,再组成方程组即可.【详解】解:设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得:,即.故选:A.【点睛】本题考查二元一次方程组的应用,关键是利用总人数和总钱数作为等量关系列方程组.二、填空题(每小题3分,共24分)11、【分析】先画出图形,根据等腰三角形“三线合一”的性质及勾股定理即可求得结果.【详解】如图,AB=AC=8,BC=6,AD为高,则BD=CD=3,∴故答案为:【点睛】本题考查的是等腰三角形的性质,勾股定理,解答本题的关键是熟练掌握等腰三角形“三线合一”的性质:等腰三角形顶角平分线,底边上的高,底边上的中线重合.12、(15.5,2.5)【分析】根据对称性质可得点的坐标变化规律,由此即可求解.【详解】解:△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),∴BC=5∴A(﹣1.5,2.5)将△ABC关于y轴轴对称变换得到△A1B1C1,∴A1(1.5,2.5)再将△A1B1C1关于直线x=2轴对称变换得到△A2B2C2,∴A2(2.5,2.5)再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,∴A3(5.5,2.5)再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4,∴A4(6.5,2.5)…按此规律继续变换下去,A5(8.5,2.5),A6(9.5,2.5),A7(11.5,2.5)则点A10的坐标为(15.5,2.5),故答案为:(15.5,2.5).【点睛】本题考查了规律型点的坐标,解决本题的关键是掌握对称性.注意在寻找规律的过程中需要多写出几个点A的坐标.13、x≤3【分析】根据二次根式有意义的条件解答.【详解】解:根据题意得:3-x≥0,解得:x≤3,故答案为x≤3.【点睛】本题考查二次根式的性质,熟记二次根式有意义被开方数非负是解题关键.14、-5【分析】直接利用二元一次方程的定义分析得出答案.【详解】∵是关于、的二元一次方程,∴,,,解得:,,∴.故答案为:.【点睛】本题主要考查了二元一次方程的定义,正确把握未知数的次数是解题关键.15、45°【分析】连接AD,根据角平分线的定义得到AE,DE分别平分∠CAB,∠ODB,得到∠EAO+∠EDO=45°,根据三角形内角和定理计算即可.【详解】连接AD,如图所示:
∵BD∥AC,
∴∠BAC=∠ABD,
∵∠ABD+∠ODB=90°,
∴∠BAC+∠ODB=90°,
∵AE,DE分别平分∠CAB,∠ODB,
∴,
∴,
∵∠AED+∠EAD+∠EDA=180°,即∠AED+∠EAO+∠OAD+∠EDO+∠ODA=180°,
∵∠OAD+∠ODA=90°,
∴∠AED+45°+90°=180°,
∴∠AED=45°.故答案为:45°.【点睛】本题考查平行线的性质,坐标与图形,三角形内角和定理,直角三角形两锐角互余等.熟练掌握相关定理,能得出角度之间的关系是解题关键.16、4【分析】根据等边三角形的性质得出∠A=∠B=∠C,进而得出∠MPB=∠NMC=∠PNA=90°,根据平角的义即可得出∠NPM=∠PMN=∠MNP,即可证△PMN是等边三角形:根据全等三角形的性质得到PA=BM=CN,PB=MC=AN,从而求得MC+NC=AC=12cm,再根据直角三角形30°角所对的直角边等于斜边的一半得出2MC=NC,即司得MC的长.【详解】∵△ABC是等边三角形,∴∠A=∠B=∠C.∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,∴∠PMB=∠MNC=∠APN,∠NPM=∠PMN=∠MNP,∴△PMN是等边三角形∴PN=PM=MN,∴△PBM≌△MCN≌△NAP(AAS),∴PA=BM=CN,PB=MC=AN,MC+NC=AC=12cm,∵∠C=60°,∴∠MNC=30°,∴NC=2CM,∴MC+NC=3CM=12cm,∴CM=4cm.故答案为:4cm【点睛】本题考查了等边三角形的判定和性质,平角的意义,三角形全等的性质等,得出∠NPM=∠PMN=∠MNP是本题的关键.17、.【详解】解:根据勾股定理列式计算即可得解:∵∠C=90°,AB=7,BC=5,∴.故答案为:.18、1【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【详解】解:∵,,
∴原式,故答案为:1.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三、解答题(共66分)19、(1)一次函数表达式为:;正比例函数的表达式为:;(2)E(-2,-3);(3)P点坐标为(,0)或(,0)或(0,2)或(0,-2).【分析】(1)将点A坐标代入可求出一次函数解析式,然后可求点B坐标,将点B坐标代入即可求出正比例函数的解析式;(2)首先求出点D坐标,根据DE∥AC设直线DE解析式为:,代入点D坐标即可求出直线DE解析式,联立直线DE解析式和正比例函数解析式即可求出点E的坐标;(3)首先求出△ABO的面积,然后分点P在x轴和点P在y轴两种情况讨论,设出点P坐标,根据列出方程求解即可.【详解】解:(1)将点A(4,1)代入得,解得:b=5,∴一次函数解析式为:,当y=3时,即,解得:,∴B(2,3),将B(2,3)代入得:,解得:,∴正比例函数的表达式为:;(2)∵一次函数解析式为:,∴C(0,5),∴D(0,-5),∵DE∥AC,∴设直线DE解析式为:,将点D代入得:,∴直线DE解析式为:,联立,解得:,∴E(-2,-3);(3)设直线与x轴交于点F,令y=0,解得:x=5,∴F(5,0),∵A(4,1),B(2,3),∴,当点P在x轴上时,设P点坐标为(m,0),由题意得:,解得:,∴P点坐标为(,0)或(,0);当点P在y轴上时,设P点坐标为(0,n),由题意得:,解得:,∴P点坐标为(0,2)或(0,-2),综上所示:P点坐标为(,0)或(,0)或(0,2)或(0,-2).【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数的性质以及一次函数图象交点的求法,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数解析式;(2)利用平行直线的系数k相等求出直线DE解析式;(3)求出△ABO的面积,利用方程思想和分类讨论思想解答.20、(1)y=120x﹣140(2≤x≤4.5);(2)当x=时,轿车在货车前30千米.【分析】(1)设线段CD对应的函数解析式为y=kx+b,由待定系数法求出其解即可;(2)由货车和轿车相距30千米列出方程解答即可.【详解】(1)设线段CD对应的函数表达式为y=kx+b.将C(2,100)、D(4.5,400)代入y=kx+b中,得解方程组得所以线段CD所对应的函数表达式为y=120x﹣140(2≤x≤4.5).(2)根据题意得,120x﹣140﹣80x=30,解得.答:当x=时,轿车在货车前30千米.【点睛】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.21、(1)往左平移个单位;(2)存在,往左平移个单位.【分析】(1)作B点关于x轴的对称点B1,连接AB1,由对称性可知AC+BC=AC+B1C,当直线AB1向左平移到经过点C时,AC+BC最小,故求出直线AB1与x轴的交点即可知平移距离;(2)四边形中长度不变,四边形的周长最小,只要最短,将线段DA向右平移2个单位,D,C重合,A点平移到A1(-2,8),方法同(1),求出A1B1的解析式,得到直线A1B1与x轴的交点即可知平移距离.【详解】(1)如图,作B点关于x轴的对称点B1(2,-2),连接AB1,由对称性可知AC+BC=AC+B1C,当直线AB1向左平移到经过点C时,AC+BC最小,设直线AB1的解析式为:,代入点A(-4,8),B1(2,-2)得:,解得∴直线AB1的解析式为当y=0时,,解得,则直线AB1与轴交于,∵C(-2,0),∴往左平移个单位.(2)四边形中长度不变,只要最短,如图,将线段DA向右平移2个单位,D,C重合,A点平移到A1(-2,8),同(1)可知,当直线AB2向左平移到经过点C时,AD+BC最小,设直线A1B1的解析式为,代入点A1(-2,8),B1(2,-2)得:,解得∴直线A1B1的解析式为当y=0时,,解得∴直线A1B1与轴交于,∴往左平移个单位.【点睛】本题考查最短路径问题,熟练掌握待定系数法求函数解析式,利用对称性找到最短路径是解题的关键.22、(1)乙将被推荐参加校级决赛;(2)甲将被推荐参加校级决赛,建议:由于演讲内容的权较大,乙这项得成绩较低,应改进演讲内容,争取更好得成绩.【分析】(1)根据平均数的定义即可求出平均数,再比较即可判断;(2)根据加权平均数的定义即可求出各自平均数,再比较即可判断【详解】(1)(分),(分),,∴乙将被推荐参加校级决赛.(2)(分),(分),,∴甲将被推荐参加校级决赛.建议:由于演讲内容的权较大,乙这项得成绩较低,应改进演讲内容,争取更好得成绩.【点睛】此题主要考查平均数,解题的关键是熟知平均数与加权平均数的定义与性质.23、见解析【分析】连接AC.首先根据勾股定理求得AC的长,再根据勾股定理的逆定理求得∠D=90°,进而求出∠A+∠C=180°【详解】证明:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2∴∠D=90°,∴∠A+∠C=360°−180°=180°【点睛】本题考查了勾股定理的逆定理、勾股定理、多边形内角与外角,借助辅助线方法是解决本题的关键24、(1)普通列车的行驶路程是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏安全技术职业学院《肿瘤放射治疗学》2023-2024学年第一学期期末试卷
- 老年人卧床的护理措施
- 新疆农业大学《多元音乐文化与世界名曲欣赏》2023-2024学年第一学期期末试卷
- 河北省张家口市涿鹿县2024-2025学年初三第一次模拟考试(化学试题文)试卷含解析
- 2025年山东省莱芜市莱城区茶业口镇腰关中学初三下学期十月月考化学试题含解析
- 广东职业技术学院《生物纳米与高分子材料》2023-2024学年第二学期期末试卷
- 浙江广厦建设职业技术大学《马克思基本原理》2023-2024学年第二学期期末试卷
- 湖南网络工程职业学院《地下工程结构》2023-2024学年第一学期期末试卷
- 北京科技经营管理学院《土力学理论与实践》2023-2024学年第二学期期末试卷
- 广东工业大学《电路板设计CAD》2023-2024学年第二学期期末试卷
- GB∕T 40741-2021 焊后热处理质量要求
- Model5000功率计(介绍及操作)
- 超导材料应用举例PPT课件
- 现场总线技术03 PROFIBUS总线
- 2020年超星尔雅重说中国近代史通识课期末考试答案
- 急性肺动脉栓塞诊断及介入治疗经验分享PPT课件
- 轮胎式装载机检测报告(共5页)
- 电动机可逆运行控制电路
- 抗菌药物分级管理目录(完整资料).doc
- 基于语音信号去噪处理的FIR滤波器设计
- 会见笔录(故意伤害审查起诉阶段)
评论
0/150
提交评论