![2023届湖北省恩施州东城中学数学八年级上册期末综合测试试题含解析_第1页](http://file4.renrendoc.com/view/f079f42ece2743e02dfdd604737bb7a5/f079f42ece2743e02dfdd604737bb7a51.gif)
![2023届湖北省恩施州东城中学数学八年级上册期末综合测试试题含解析_第2页](http://file4.renrendoc.com/view/f079f42ece2743e02dfdd604737bb7a5/f079f42ece2743e02dfdd604737bb7a52.gif)
![2023届湖北省恩施州东城中学数学八年级上册期末综合测试试题含解析_第3页](http://file4.renrendoc.com/view/f079f42ece2743e02dfdd604737bb7a5/f079f42ece2743e02dfdd604737bb7a53.gif)
![2023届湖北省恩施州东城中学数学八年级上册期末综合测试试题含解析_第4页](http://file4.renrendoc.com/view/f079f42ece2743e02dfdd604737bb7a5/f079f42ece2743e02dfdd604737bb7a54.gif)
![2023届湖北省恩施州东城中学数学八年级上册期末综合测试试题含解析_第5页](http://file4.renrendoc.com/view/f079f42ece2743e02dfdd604737bb7a5/f079f42ece2743e02dfdd604737bb7a55.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.代数式的值为()A.正数 B.非正数 C.负数 D.非负数2.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个 B.3个 C.4个 D.5个3.如图,△BAC的外角∠CAE为120°,∠C=80°,则∠B为()A.60° B.40° C.30° D.45°4.分式有意义,则的取值范围是()A. B. C. D.5.若一个三角形的两边长分别为5和8,则第三边长可能是()A.13 B.10 C.3 D.26.如果,那么的值为().A.9 B. C. D.57.关于x的分式方程的解为负数,则a的取值范围是A. B. C.且 D.且8.下列各式中属于最简二次根式的是()A. B. C. D.9.下列说法正确的是()A.命题:“等腰三角形两腰上的中线相等”是真命题 B.假命题没有逆命题C.定理都有逆定理 D.不正确的判断不是命题10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2 B. C.5 D.二、填空题(每小题3分,共24分)11.一把工艺剪刀可以抽象为下图,其中,若剪刀张开的角为,则.12.铁路部门规定旅客免费携带行李箱的长宽高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽之比为3:2,则该行李箱长度的最大值是cm.13.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.14.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.15.如图,在等边三角形中,,点为边的中点,点为边上的任意一点(不与点重合),将沿折叠使点恰好落在等边三角形的边上,则的长为_______cm.16.在中,,为直线上一点,为直线上一点,,设,.(1)如图1,若点在线段上,点在线段上,则,之间关系式为__________.(2)如图2,若点在线段上,点在延长线上,则,之间关系式为__________.17.若式子有意义,则的取值范围____________.18.已知,则_________.三、解答题(共66分)19.(10分)解下列方程并检验(1)(2)20.(6分)某校学生利用春假时间去距离学校10km的静园参观。一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达。已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度。21.(6分)在一棵树的10米高处有两只猴子,其中一只猴子爬下树走到离树20米的池塘,另一只猴子爬到树顶后直接跃向池塘的处,如果两只猴子所经过距离相等,试问这棵树有多高.22.(8分)如图,为等边三角形,为上的一个动点,为延长线上一点,且.(1)当是的中点时,求证:.(2)如图1,若点在边上,猜想线段与之间的关系,并说明理由.(3)如图2,若点在的延长线上,(1)中的结论是否仍然成立,请说明理由.23.(8分)如图,在四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.24.(8分)(1)已知,,求的值;(2)已知,,求的值.25.(10分)已知:∠AOB=30°,点P是∠AOB内部及射线OB上一点,且OP=10cm.(1)若点P在射线OB上,过点P作关于直线OA的对称点,连接O、P,如图①求P的长.(2)若过点P分别作关于直线OA、直线OB的对称点、,连接O、O、如图②,求的长.(3)若点P在∠AOB内,分别在射线OA、射线OB找一点M,N,使△PMN的周长取最小值,请直接写出这个最小值.如图③26.(10分)已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,△PBQ是等边三角形?(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】首先将代数式变换形式,然后利用完全平方公式,即可判定其为非负数.【详解】由题意,得∴无论、为何值,代数式的值均为非负数,故选:D.【点睛】此题主要考查利用完全平方公式判定代数式的值,熟练掌握,即可解题.2、C【分析】①正确.可以证明△ABE≌△ACF可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA证明三角形全等即可.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE−∠BAC=∠CAF−∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.【点睛】本题考查三角形全等的判定方法和三角形全等的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.3、B【分析】由三角形的外角性质得出∠CAE=∠B+∠C,即可得出结果.【详解】解:由三角形的外角性质得:∠CAE=∠B+∠C,∴∠B=∠CAE-∠C=120°-80°=40°;故选B.【点睛】本题考查了三角形的外角性质;熟记三角形的外角性质是解决问题的关键.4、D【解析】要使分式有意义,分式的分母不能为0,即,解得x的取值范围即可.【详解】∵有意义,∴,解得:,故选:D.【点睛】解此类问题只要令分式中分母不等于0,求得字母的值即可.5、B【分析】根据三角形的三边关系,求出第三边的长的取值范围,即可得出结论.【详解】解:∵三角形两边的长分别是5和8,∴8-5<第三边的长<8+5解得:3<第三边的长<13由各选项可知,符合此范围的选项只有B故选B.【点睛】此题考查的是根据三角形两边的长,求第三边的长的取值范围,掌握三角形的三边关系是解决此题的关键.6、C【分析】对分解因式的结果利用多项式乘以多项式法则计算,再利用多项式相等的条件即可求出m的值.【详解】∵,
∴.
故选:C.【点睛】本题考查了因式分解的意义,熟练掌握多项式乘以多项式法则是解本题的关键.7、D【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【详解】分式方程去分母得:,即,因为分式方程解为负数,所以,且,解得:且,故选D.【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为1.8、A【分析】找到被开方数中不含分母的,不含能开得尽方的因数或因式的式子即可.【详解】解:A、是最简二次根式;B、,被开方数含分母,不是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含分母,不是最简二次根式.故选:A.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9、A【分析】利用命题的有关定义及性质、等腰三角形的性质逐项判断即可.【详解】A、如图,是等腰三角形,,CE、BD分别是AB、AC上的中线则又,则此项正确B、每一个命题都有逆命题,此项错误C、定理、逆定理都是真命题,因此,当定理的逆命题是假命题时,定理就没有逆定理,此项错误D、不正确的判断是命题,此项错误故选:A.【点睛】本题考查了命题的有关定义及性质、等腰三角形的性质,掌握理解各定义与性质是解题关键.10、B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题(每小题3分,共24分)11、1【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】解:∵AC=AB,∠CAB=40°,∴∠B=(180°-40°)=1°,
故答案为:1.【点睛】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.12、1.【分析】设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.【详解】解:设长为3xcm,宽为2xcm,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为1.故答案为1cm.13、1【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.14、1【解析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为=1,故答案为:1.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.15、或【分析】如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,于是得到MN⊥AB,BN=BN′,根据等边三角形的性质得到AC=BC,∠ABC=60°,根据线段中点的定义得到BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,根据线段中点的定义即可得到结论.【详解】解:如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,则MN⊥AB,BN=BN′,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=60°,∵点M为边BC的中点,∴BM=BC=AB=,∴BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,∵∠ABC=60°,点M为边BC的中点,∴BN=BM=BC=AB=,,故答案为:或.【点睛】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.16、【分析】(1)利用等腰三角形的性质和三角形的内角和即可得出结论;(2)当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论.【详解】(1)设∠ABC=x,∠AED=y,∵,,∴∠ACB=∠ABC,∠AED=∠ADE∴∠ACB=x,∠ADE=y,在△DEC中,∵∠AED=∠ACB+∠EDC,∴y=β+x,在△ABD中,∵∠ADC=∠BAD+∠ABC,∠ADC=∠ADE+∠EDC=∠AED+∠EDC,∴α+x=y+β=β+x+β,∴α=2β;故答案为:α=2β;(2)当点E在CA的延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,∵,,∴∠ACB=∠ABC,∠AED=∠ADE,∴∠ACB=x,∠AED=y,在△ABD中,∵∠ADC=∠BAD+∠ABC,∠ADC=∠EDC-∠ADE,∴x+α=β-y,在△DEC中,∵∠ECD+∠CED+∠EDC=180°,∴x+y+β=180°,∴α=2β-180°;故答案为α=2β-180°.【点睛】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.17、且【分析】根据二次根式与分式有意义的条件解答即可.【详解】解:由题意得:,解得且.故答案为:且.【点睛】本题考查了二次根式与分式有意义的条件,属于基础题目,掌握解答的方法是关键.18、1【分析】令,,根据完全平方公式的变形公式,即可求解.【详解】令,,则x-y=1,∵,∴,即:,∵,∴,即:xy=1,故答案是:1.【点睛】本题主要考查通过完全平方公式进行计算,掌握完全平方公式及其变形,是解题的关键.三、解答题(共66分)19、(1)x=;(2)x=【分析】(1)两边都乘以2(x+3),把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)两边都乘以2(x-1),把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)两边都乘以2(x+3),去分母得:4x+2x+6=7,移项合并得:6x=1,解得:x=,检验:当x=时,x+3≠0,∴x=是分式方程的解;(2)两边都乘以2(x-1),去分母得:3-2=6x-6,解得:x=,检验:当x=时,x-1≠0,∴x=是分式方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.20、15km/h,30km/h【分析】根据时间来列等量关系.关键描述语为:“一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达”,根据等量关系列出方程.【详解】解:设骑车学生的速度为x千米/小时,汽车的速度为2x千米/小时,解得:x=15,
经检验x=15是原方程的解,
2x=2×15=30,
答:骑车学生的速度和汽车的速度分别是15km/h,30km/h.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,得到合适的等量关系是解决问题的关键.21、树高为15m.【分析】设树高BC为xm,则可用x分别表示出AC,利用勾股定理可得到关于x的方程,可求得x的值.【详解】解:设树高BC为xm,则CD=x-10,则题意可知BD+AB=10+20=30,∴AC=30-CD=30-(x-10)=40-x,∵△ABC为直角三角形,∴AC2=AB2+BC2,即(40-x)2=202+x2,解得x=15,即树高为15m,【点睛】本题主要考查勾股定理的应用,用树的高度表示出AC,利用勾股定理得到方程是解题的关键.22、(1)证明见解析;(2),理由见解析;(3)成立,理由见解析.【分析】(1)根据等边三角形的性质可得,,然后根据等边对等角可得,从而求出,然后利用等角对等边即可证出,从而证出结论;(2)过点作,交于点,根据等边三角形的判定也是等边三角形,然后利用AAS即可证出,根据全等三角形的性质可得,从而证出结论;(3)过点作,交的延长线于点,根据等边三角形的判定也是等边三角形,然后利用AAS即可证出,根据全等三角形的性质可得,从而证出结论;【详解】(1)证明:∵为等边三角形,是的中点,∴,.∵,∴.∵,∴,∴,∴.(2).理由:如图,过点作,交于点.∵是等边三角形,∴也是等边三角形,∴,.∵,∴.∵,∴,∴.又∵,,∴.在和中,∴,∴,∴.(3)如图,过点作,交的延长线于点.∵是等边三角形,∴也是等边三角形,∴,.∵,∴.∵,∴,∴,在和中,∴,∴,∴.【点睛】此题考查的是等边三角形的判定及性质、全等三角形的判定及性质和平行线的性质,掌握等边三角形的判定及性质、全等三角形的判定及性质和平行线的性质是解决此题的关键.23、CD=2.【分析】先延长AD、BC交于E,根据已知证出△CDE是等边三角形,设CD=x=CE=DE=x,根据AD=4,BC=1和30度角所对的直角边等于斜边的一半,求出x的值即可.【详解】延长AD、BC,两条延长线交于点E,∵∠B=90°,∠A=30°∴∠E=60°∵∠ADC=120°∴∠CDE=60°∴△CDE是等边三角形则CD=CE=DE设CD=x,则CE=DE=x,AE=x+4,BE=x+1∵在Rt△ABE中,∠A=30°∴x+4=2(x+1)解得:x=2∴CD=2.【点睛】此题考查了含30度角的直角三角形,用到的知识点是30度角所对的直角边等于斜边的一半,等边三角形的判定与性质,关键是作出辅助线,构造直角三角形.24、(1)154;(2)108【分析】(1)原式先提取公因式,再利用完全平方公式变形,然后整体代入计算即可;
(2)根据同底数幂的乘法,幂的乘方的运算法则计算即可.【详解】(1),当,时,原式==154;(2)当,时,原式.【点睛】本题考查了代数式求值,因式分解的应用,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.25、(1)=10cm;(2)=10cm;(3)最小值是10cm.【分析】(1)根据对称的性质可得OP=O,∠PO=2∠AOB=60°,从而证出△PO是等边三角形,然后根据等边三角形的性质即可得出结论;(2)根据对称的性质可得OP=O,OP=O,∠PO=2∠AOP,∠PO=2∠BOP,然后证出△PO是等边三角形即可得出结论;(3)过点P分别作关于直线OA、直线OB的对称点、,连接O、O、,分别交OA、OB于点M、N,连接PM、PN,根据两点之间线段最短即可得出此时△PMN的周长最小,且最小值为的长,然后根据(2)即可得出结论.【详解】解:(1)∵点P与关于直线OA对称,∠AOB=30°∴OP=O,∠PO=2∠AOB=60°∴△PO是等边三角形∵OP=10cm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年磨内弧砂轮项目可行性研究报告
- 2025年玩具鹿项目可行性研究报告
- 2025年氰戊菊酯项目可行性研究报告
- 2025至2031年中国发电机微机监控系统行业投资前景及策略咨询研究报告
- 2025年十六烷基三甲基碘化铵项目可行性研究报告
- 2025年交通路牌铝槽项目可行性研究报告
- 2025至2030年鲜牛蒡项目投资价值分析报告
- 2025至2030年野生茶饼项目投资价值分析报告
- 2025至2030年中国钛金属点焊机数据监测研究报告
- 2025至2030年中国起动机电磁吸力开关数据监测研究报告
- 2025年业务员工作总结及工作计划模版(3篇)
- 必修3《政治与法治》 选择题专练50题 含解析-备战2025年高考政治考试易错题(新高考专用)
- 二零二五版电商企业兼职财务顾问雇用协议3篇
- 课题申报参考:流视角下社区生活圈的适老化评价与空间优化研究-以沈阳市为例
- 深圳2024-2025学年度四年级第一学期期末数学试题
- 2024-2025学年成都市高新区七年级上英语期末考试题(含答案)
- 17J008挡土墙(重力式、衡重式、悬臂式)图示图集
- 道教系统诸神仙位宝诰全谱
- 新视野大学英语读写教程 第三版 Book 2 unit 8 教案 讲稿
- 村务公开表格
- 人教精通五年级英语下册译文
评论
0/150
提交评论