2023届广西柳州市五城区数学八年级上册期末质量跟踪监视试题含解析_第1页
2023届广西柳州市五城区数学八年级上册期末质量跟踪监视试题含解析_第2页
2023届广西柳州市五城区数学八年级上册期末质量跟踪监视试题含解析_第3页
2023届广西柳州市五城区数学八年级上册期末质量跟踪监视试题含解析_第4页
2023届广西柳州市五城区数学八年级上册期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大 B.上升时,OP减小C.无论怎样滑动,OP不变 D.只要滑动,OP就变化2.下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣2)3×(﹣2)3=﹣26C.(﹣5)4÷(﹣5)4=﹣52 D.(﹣4)0=13.若是一个完全平方式,则常数的值是()A.11 B.21或 C. D.21或4.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1 B.a2+4 C.a2+2a+1 D.a2﹣4a﹣45.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A. B.C. D.6.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个 B.2个 C.3个 D.4个7.如图所示的两个三角形全等,则的度数是()A. B. C. D.8.现有两根木棒,长度分别为5cm和17cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()A.24cm的木棒 B.15cm的木棒 C.12cm的木棒 D.8cm的木棒9.计算()A.5 B.-3 C. D.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°二、填空题(每小题3分,共24分)11.如果关于的方程无解,则的值为______.12.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(-1,y1),P2(2,y2)两点,则y1_____y2(填“>”或“<”或“=”)13.分解因式:2x3﹣6x2+4x=__________.14.已知直角三角形的两条直角边分别为5和12,则其斜边上的中线长为_____.15.如图,已知,点,在边上,,,点是边上的点,若使点,,构成等腰三角形的点恰好只有一个,则的取值范围是______.16.关于x、y的方程组与有相同的解,则a+b的值为____.17.如图,直线分别与轴、轴交于点、点,与直线交于点,且直线与轴交于点,则的面积为___________.18.解关于x的方程产生增根,则常数m的值等于________.三、解答题(共66分)19.(10分)在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?20.(6分)(1)分解因式:(2)解分式方程:21.(6分)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个关的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式.称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程;(2)如图3所示,,请你添加适当的辅助线证明结论.22.(8分)在一个含有两个字母的代数式中,如果任意交换这两个字母的位置.代数式的值不变,则称这个代数式为二元对称式,例如:,,,都是二元对称式,其中,叫做二元基本对称式.请根据以上材料解决下列问题:(1)下列各代数式中,属于二元对称式的是______(填序号);①;②;③;④.(2)若,,将用含,的代数式表示,并判断所得的代数式是否为二元对称式;(3)先阅读下面问题1的解决方法,再自行解决问题2:问题1:已知,求的最小值.分析:因为条件中左边的式子和求解中的式子都可以看成以,为元的对称式,即交换这两个元的位置,两个式子的值不变,也即这两个元在这两个式子中具有等价地位,所以当这两个元相等时,可取得最小值.问题2,①已知,则的最大值是______;②已知,则的最小值是______.23.(8分)如图1,的所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.(1)若,判断是否为奇异三角形,并说明理由;(2)若,,求的长;(3)如图2,在奇异三角形中,,点是边上的中点,连结,将分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.24.(8分)已知:如图,在四边形中,,点是的中点.(1)求证:是等腰三角形:(2)当=°时,是等边三角形.25.(10分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.26.(10分)先化简,再求值:(x+2)(x-2)+x(4-x),其中x=.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OP=AB.【详解】解:∵AO⊥BO,点P是AB的中点,

∴OP=AB,

∴在滑动的过程中OP的长度不变.

故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.2、D【分析】分别根据负整数指数幂的运算法则,积的乘方运算法则,同底数幂的除法法则以及任何非零数的零次幂等于1对各个选项逐一判断即可.【详解】A.(﹣1)﹣3=﹣1,故本选项不合题意;B.(﹣2)3×(﹣2)3=[(﹣2)×(﹣2)]3=(22)3=26,故本选项不合题意;C.(﹣5)4÷(﹣5)4=1,故本选项不合题意;D.(﹣4)0=1,正确,故本选项符合题意.故选:D.【点睛】本题主要考查了同底数幂的除法,负整数指数幂,幂的乘方与积的乘方以及零指数幂,熟记幂的运算法则是解答本题的关键.3、D【分析】利用完全平方公式的结构特征判断即可得出答案.【详解】∵是一个完全平方式,∴,∴或,故选:D.【点睛】本题主要考查了完全平方公式的运用,熟练掌握相关公式是解题关键.4、C【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【详解】A.

不符合完全平方公式法分解因式的式子特点,故错误;B.

不符合完全平方公式法分解因式的式子特点,故错误;C.符合完全平方公式法分解因式的式子特点,故正确;D.,不符合完全平方公式法分解因式的式子特点,故错误.故选C.【点睛】本题考查因式分解-运用公式法.5、A【分析】根据轴对称图形的概念解答即可.【详解】A、不是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选A.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,熟记轴对称图形的定义是解题关键.6、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、A【分析】根据全等三角形对应角相等解答即可.【详解】解:在△ABC中,∠B=180-58°-72°=50°,∵两个三角形全等,

∴∠1=∠B=50°.

故选A.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.8、B【分析】根据三角形的三边关系,确定第三边的取值范围,即可完成解答.【详解】解:由三角形的三边关系得:17-5<第三边<17+5,即第三边在12到22之间故答案为B.【点睛】本题考查了三角形的三边关系的应用,找到三角形三边关系与实际问题的联系是解答本题的关键.9、A【分析】根据0指数幂和负整数幂定义进行计算即可.【详解】故选:A【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.10、B【解析】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(每小题3分,共24分)11、﹣2或1【分析】分式方程无解有两种情况:(1)原方程存在增根;(2)原方程约去分母化为整式方程后,整式方程无解,据此解答即可.【详解】去分母,得,整理,得,当a=1时,方程无解;当a≠1时,.∵当时,分式方程无解,∴,解得:.故答案为:﹣2或1.【点睛】本题考查了分式方程无解的情况,解题的关键是既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.12、<【分析】根据函数的增减性即可得出答案.【详解】∵一次函数y=2x+1,k=2>0∴y随x的增大而增大,∵-1<2∴y1<y2故填:<.【点睛】本题考查一次函数的增减性,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.13、2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.14、6.1.【分析】利用勾股定理求出斜边,再利用直角三角形中,斜边上的中线等于斜边的一半,便可得到答案.【详解】解:斜边长为:故斜边上的中线为斜边的一半,故为6.1故答案为:6.1【点睛】本题考查勾股定理应用,以及直角三角形斜边上的中线为斜边的一半,掌握这两个知识点是解题的关键.15、或【分析】根据等腰三角形的性质分类讨论,分别求解范围即可.【详解】①如图1,当时,即,以为圆心,以1为半径的圆交于点,此时,则点,,构成的等腰三角形的点恰好只有一个.②如图1.当时,即,过点作于点,∴.∴,作的垂直平分线交于点,则.此时,以,,构成的等腰三角形的点恰好有1个.则当时,以,,构成的等腰三角形恰好只有一个.综上,当或时,以,,构成的等腰三角形恰好只有一个.【点睛】本题考查等腰三角形的判定,主要通过数形结合的思想解决问题,解题关键在于熟练掌握已知一边,作等腰三角形的画法.16、5【分析】联立不含a与b的方程,组成方程组,求出x与y的值,进而确定出a与b的值,代入原式计算即可求出值.【详解】联立得:,①×3+②得:11x=11,解得:x=1,把x=1代入①得:y=﹣2,∴方程组的解为,把代入得:,即,④×2﹣③得:9b=27,解得:b=3,把b=3代入④得:a=2,∴a+b=3+2=5,故答案为:5【点睛】本题主要考查二元一次方程组的解的定义以及二元一次方程组的解法,掌握加减消元法解方程组,是解题的关键.17、4【分析】先根据函数解析式分别求出点A、B、C、D的坐标,再根据的面积=△ACD的面积-△BCD的面积求出答案.【详解】令中y=0,得x=3,∴D(3,0),令中x=0,得y=4,∴A(0,4),解方程组,得,∴B(,2),过点B作BH⊥x轴,则BH=2,令中y=0,得x=-1,∴C(-1,0),∴CD=4,,∴的面积=S△ACD-S△BCD==,故答案为:4.【点睛】此题考查一次函数与坐标轴的交点坐标的求法,两个一次函数交点的坐标的求法,理解方程及方程组与一次函数的关系是解题的关键.18、【分析】先通过去分母,将分式方程化为整式方程,再根据增根的定义得出x的值,然后将其代入整式方程即可.【详解】两边同乘以得,由增根的定义得,将代入得,故答案为:.【点睛】本题考查了解分式方程、增根的定义,掌握理解增根的定义是解题关键.三、解答题(共66分)19、(1)施工方共有6种租车方案(2)x=39时,w最小,最小值为83700元.【分析】(1)设大车租x辆,则小车租(80﹣x)辆.列出不等式组,求整数解,即可解决问题.(2)设租车费用为w元,则w=1200x+900(80﹣x)=300x+72000,利用一次函数的增减性,即可解决问题.【详解】解:(1)设大车租x辆,则小车租(80﹣x)辆.由题意,解得,∵x为整数,∴x=39或40或41或42或43或1.∴施工方共有6种租车方案.(2)设租车费用为w元,则w=1200x+900(80﹣x)=300x+72000,∵300>0,∴w随x增大而增大,∴x=39时,w最小,最小值为83700元.【点睛】本题考查一次函数的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要会利用题中的不等关系找到x的取值范围,并根据函数的增减性求得y的最小值是解题的关键.20、(1)(2)x=3【分析】(1)先提取公因式,再利用完全平方公式即可分解;(2)根据分式方程的解法去分母化为整式方程,再进行求解.【详解】(1)==(2)x=3经检验,x=3是原方程的解.【点睛】此题主要考查因式分解及分式方程的求解,解题的关键是熟知分式方程的解法.21、(1)见解析;(2)见解析【分析】(1)由图1可知:四个全等的直角三角形的面积+中间小正方形的面积=大正方形的面积,然后化简即可证明;(2)如图,过A作交BC线于D,先证明可得,,然后根据梯形EDBA的面积列式化简即可证明.【详解】(1)证明:大正方形面积为:整理得∴;(2)过A作交BC线于D∵,,,∴,∴,∴,∴∴∴.【点睛】本题主要考查了运用几何图形来证明勾股定理,矩形和正方形的面积,三角形的面积,锻炼了同学们的数形结合的思想方法.22、(1)②④(2),不是;(3)①;②1【分析】(1)根据题中二元对称式的定义进行判断即可;(2)将进行变形,然后将,,整体代入即可得到代数式,然后判断即可;(3)①根据问题1的解决方法,发现当两个代数式都为二元的对称式时,两个元相等时,另一个代数式取最值,然后即可得到答案;②令,将式子进行换元,得到两个二元对称式,即可解决问题.【详解】(1),①不是二元对称式,,②是二元对称式,,③不是二元对称式,,④是二元对称式,故答案为:②④;(2)∵,.∴,∴.当,交换位置时,代数式的值改变了,∴不是二元对称式.(3)①当时,即当时,有最大值,最大值为.②令,则,,∴当时,取最小值,即取到最小值,∴时,取到最小值,所以最小值为1.【点睛】本题考查了代数式的内容,正确理解题意,掌握换元法是解题的关键.23、(1)是,理由见解析;(2);(3)【解析】(1)根据奇异三角形的概念直接进行判断即可.(2)根据勾股定理以及奇异三角形的概念直接列式进行计算即可.(3)根据△ABC是奇异三角形,且b=2,得到,由题知:AD=CD=1,且BC=BD=a,根据△ADB是奇异三角形,则或,分别求解即可.【详解】(1)∵,,∴,∴即△ABC是奇异三角形.(2)∵∠C=90°,∴∵∴,∴解得:.(3)∵△ABC是奇异三角形,且b=2∴由题知:AD=CD=1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论