2022年广东省汕头市潮南区数学八年级第一学期期末联考试题含解析_第1页
2022年广东省汕头市潮南区数学八年级第一学期期末联考试题含解析_第2页
2022年广东省汕头市潮南区数学八年级第一学期期末联考试题含解析_第3页
2022年广东省汕头市潮南区数学八年级第一学期期末联考试题含解析_第4页
2022年广东省汕头市潮南区数学八年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,,边的垂直平分线交于点.已知的周长为14,,则的值为()A.14 B.6 C.8 D.202.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A.75° B.135° C.120° D.105°3.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的百分比是()A.10%B.20%C.30%D.40%4.一组数据,,,,的众数为,则这组数据的中位数是()A. B. C. D.5.下列图案不是轴对称图形的是()A. B. C. D.6.如果把分式中的x,y同时扩大为原来的3倍,那么该分式的值()A.不变 B.扩大为原来的3倍C.缩小为原来的 D.缩小为原来的7.将直线y=-x+a的图象向下平移2个单位后经过点A(3,3),则a的值为()A.-2 B.2 C.-4 D.88.下列多项式①x²+xy-y²②-x²+2xy-y²③xy+x²+y²④1-x+x其中能用完全平方公式分解因式的是(

)A.①② B.①③ C.①④ D.②④9.满足下列条件的,不是直角三角形的是()A. B.C. D.10.如果x2+2ax+9是一个完全平方式,则a的值是()A.3 B.﹣3 C.3或﹣3 D.9或﹣9二、填空题(每小题3分,共24分)11.如果关于x的方程2无解,则a的值为______.12.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为.13.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=______度.14.如果是一个完全平方式,则的值是_________.15.在中,,,点在斜边所在的直线上,,线段关于对称的线段为,连接、,则的面积为_______.16.甲、乙两地相距1000km,如果乘高铁列车从甲地到乙地比乘特快列车少用3h,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为xkm/h,根据题意可列方程为__.17.在实数范围内分解因式=___________.18.当x=__________时,分式的值为零.三、解答题(共66分)19.(10分)解不等式,并将解集在数轴上表示出来.20.(6分)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).21.(6分)计算(1)(﹣)﹣2﹣23×1.125+21151+|﹣1|;(2)[(a+b)2﹣(a﹣b)2]÷2ab22.(8分)因式分解:(1)﹣3x3y2+6x2y3﹣3xy4(2)9a2(x﹣y)+4b2(y﹣x)23.(8分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.24.(8分)如图1,与都是等腰直角三角形,直角边,在同一条直线上,点、分别是斜边、的中点,点为的中点,连接,,,,.(1)观察猜想:图1中,与的数量关系是______,位置关系是______.(2)探究证明:将图1中的绕着点顺时针旋转(),得到图2,与、分别交于点、,请判断(1)中的结论是否成立,若成立,请证明;若不成立,请说明理由.(3)拓展延伸:把绕点任意旋转,若,,请直接列式求出面积的最大值.25.(10分)如图1,在中,,,直线经过点,且于点,于点.易得(不需要证明).(1)当直线绕点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时之间的数量关系,并说明理由;(2)当直线绕点旋转到图3的位置时,其余条件不变,请直接写出此时之间的数量关系(不需要证明).26.(10分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据线段垂直平分线的性质,可知,然后根据的周长为,可得,再由可得,即.【详解】解:边垂直平分线又的周长=,即.故选C【点睛】此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出,然后根据三角形的周长互相代换,即可其解.2、D【解析】如图,根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.故选3、A【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其百分比.【详解】根据题意得:40-(12+10+6+8)=40-36=4,则第5组所占的百分比为4÷40=0.1=10%,故选A.【点睛】此题考查了频数与频率,弄清题中的数据是解本题的关键.4、C【分析】根据中位数的定义直接解答即可.【详解】解:把这些数从小到大排列为:1、2、3、4、4,最中间的数是3,

则这组数据的中位数是3;

故选:C.【点睛】本题考查了中位数,掌握中位数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.5、D【解析】根据轴对称图形的概念,沿着某条直线翻折,直线两侧的部分能够完全重合的图形是轴对称图形,因此D不是轴对称图形,故选D.6、C【分析】根据题意和分式的基本性质即可得出结论.【详解】解:即该分式的值缩小为原来的故选C.【点睛】此题考查的是分式法基本性质的应用,掌握分式的基本性质是解决此题的关键.7、D【分析】先根据平移规律得出平移后的直线解析式,再把点A(3,3)代入,即可求出a的值.【详解】解:将直线y=-x+a向下平移1个单位长度为:y=-x+a−1.把点A(3,3)代入y=-x+a−1,得-3+a−1=3,解得a=2.故选:D.【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b,向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n,向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.8、D【解析】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.故选D.9、D【分析】根据三角形的内角和求得一个角是90°或者根据勾股定理的逆定理进行判定即可.【详解】解:A、原式可化为,由勾股定理的逆定理可得是直角三角形;B、∵,设,,,则有,即,由勾股定理的逆定理可得是直角三角形;C、原式可化为,由可得,则是直角三角形;D、由,可得:,,,不是直角三角形;故选:D.【点睛】本题考查了三角形的内角和、勾股定理的逆定理,解题的关键是找出满足直角三角形的条件:有一个角是90°,两边的平方和等于第三边的平方.10、C【解析】完全平方公式:a2±2ab+b2的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是x和3的平方,那么中间项为加上或减去x和3的乘积的2倍.【详解】解:∵x2+2ax+9是一个完全平方式,∴2ax=±2×x×3,则a=3或﹣3,故选:C.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.二、填空题(每小题3分,共24分)11、1或1.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于2.【详解】去分母得:ax﹣1=1(x﹣1)ax﹣1x=﹣1,(a﹣1)x=﹣1,当a﹣1=2时,∴a=1,此时方程无解,满足题意,当a﹣1≠2时,∴x,将x代入x﹣1=2,解得:a=1,综上所述:a=1或a=1.故答案为:1或1.【点睛】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.12、(2,-3)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此即可求得点(2,3)关于x轴对称的点的坐标.【详解】∵点(2,3)关于x轴对称;

∴对称的点的坐标是(2,-3).

故答案为(2,-3).13、25【详解】根据三角形的外角的性质可得∠ACE=∠ABC+∠A,∠DCE=∠DBC+∠D,又因为BD,CD是∠ABC的平分线与∠ACE的平分线,所以∠ACE=2∠DCE,∠ABC=2∠DBC,所以∠D=∠DCE-∠DBC=(∠ACE-∠ABC)=∠A=25°.14、1或-1【分析】首末两项是2x和3这两个数的平方,那么中间一项为加上或减去2x和3积的2倍.【详解】解:∵是一个完全平方式,

∴此式是2x与3和的平方,即可得出-a的值,

∴(2x±3)2=4x2±1x+9,

∴-a=±1,

∴a=±1.

故答案为:1或-1.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.15、4或8【分析】分类讨论①当点D在线段BC上,②当点D在线段BC上时,根据对称的性质结合等腰直角三角形的性质分别求得AC、DF=EF=CF的长,从而可求得答案.【详解】①当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAC=∠EAC,∴DF=EF,∠DFC=∠DFA=90,∵,∴,∵AB=AC,∠BAC=90,∴EF=DF=CF=,AB=AC=,∴AF=AC-CF=,DE=EF+DF=,∴;②当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAF=∠EAF,∴DF=EF,∠DFC=90,∵,∴,∵AB=AC,∠BAC=90,∴DF=EF=CF=,AB=AC=,∴AF=AC+CF=,DE=EF+DF=,∴;故答案为:或.【点睛】本题考查了对称的性质,等腰直角三角形的性质,利用等腰直角三角形的性质求得腰长是解题的关键.注意分类讨论.16、.【分析】根据题意可以列出相应的分式方程,本题得以解决.【详解】由题意可得,,故答案为:.【点睛】此题考查由实际问题抽象出分式方程,解题关键在于根据题意找到等量关系列出方程.17、【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为18、-1【分析】根据分式的解为0的条件,即可得到答案.【详解】解:∵分式的值为零,∴,解得:,∴;故答案为:.【点睛】本题主要考查分式的值为0的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.三、解答题(共66分)19、,数轴见解析【分析】根据不等式的基本性质和一般步骤解不等式,然后将解集表示在数轴上即可.【详解】解:【点睛】此题考查的是解不等式,掌握不等式的基本性质和一般步骤是解决此题的关键.20、(1)李强的速度为80米/分,张明的速度为1米/分.(2)【分析】(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据等量关系:张明和李强所用时间相同,列出方程求解即可;(2)①根据路程一定,时间与速度成反比,可求李强跑了多少分钟;②先根据路程一定,时间与速度成反比,可求李强跑了多少分钟,进一步得到张明跑了多少分钟,再根据速度=路程÷时间求解即可.【详解】(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=1.答:李强的速度为80米/分,张明的速度为1米/分.(2)①∵m=12,n=5,∴5÷(12-1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:分钟,张明的跑步速度为:6000÷米/分.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21、(1)5;(2)2.【分析】(1)分别根据负整数指数幂、幂的运算、零指数幂、绝对值运算计算出各部分,再进行加减运算即可;(2)先利用完全平方公式计算小括号,再合并同类项,最后根据整式的除法运算法则计算即可.【详解】解:(1);(2).【点睛】本题考查实数的混合运算、整式的混合运算,掌握运算法则是解题的关键.22、(1)﹣3xy2(x﹣y)2;(2)(x﹣y)(3a+2b)(3a﹣2b).【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【详解】解:(1)原式=﹣3xy2(x2﹣2xy+y2)=﹣3xy2(x﹣y)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23、(1)(2)见解析;(3)P(0,2).【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.24、(1),;(2)结论仍成立,证明见解析;(3)的面积的最大值【分析】(1)延长AE交BD于点H,易证,得,,进而得,结合中位线的性质,得,,,,进而得,;(2)设交于,易证,得,,进而得,结合中位线的性质,得,,,,进而得,;(3)易证是等腰直角三角形,,当、、共线时,的值最大,进而即可求解.【详解】(1)如图1,延长AE交BD于点H,∵和是等腰直角三角形,∴,,,∴,∴,∴(SAS),∴,,又∵,∴,∵点、、分别为、、的中点,∴,,,,∴,∴PM⊥AH,∴.故答案是:,;(2)(1)中的结论仍成立,理由如下:如图②中,设交于,∵和是等腰直角三角形,∴,,,∴,∴,∴(SAS),∴,又∵,∴,∵点、、分别为、、的中点,∴,,,,∴,∴,∴,∴,∴;(3)由(2)可知是等腰直角三角形,,∴当的值最大时,的值最大,的面积最大,∴当、、共线时,的最大值,∴,∴的面积的最大值.【点睛】本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质和判定定理,掌握旋转全等三角形模型,是解题的关键.25、(1)不成立,DE=AD-BE,理由见解析;(2)DE=BE-AD【分析】(1)DE、AD、BE之间的数量关系是DE=AD-BE.由垂直的性质可得到∠CAD=∠BCE,证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD-BE;

(2)DE、AD、BE之间的关系是DE=BE-AD.证明的方法与(1)一样.【详解】(1)不成立.

DE、AD、BE之间的数量关系是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论