2022年重庆市南开中学数学九年级第一学期期末统考模拟试题含解析_第1页
2022年重庆市南开中学数学九年级第一学期期末统考模拟试题含解析_第2页
2022年重庆市南开中学数学九年级第一学期期末统考模拟试题含解析_第3页
2022年重庆市南开中学数学九年级第一学期期末统考模拟试题含解析_第4页
2022年重庆市南开中学数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知三点、、均在双曲线上,且,则下列各式正确的是(

)A. B. C. D.2.若点A(1,y1)、B(2,y2)都在反比例函数的图象上,则y1、y2的大小关系为A.y1<y2 B.y1≤y2 C.y1>y2 D.y1≥y23.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>34.已知m,n是关于x的一元二次方程的两个解,若,则a的值为()A.﹣10 B.4 C.﹣4 D.105.要使有意义,则x的取值范围为()A.x≤0 B.x≥-1 C.x≥0 D.x≤-16.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18 B.16 C.37.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4 B.1:4:16 C.1:3:12 D.1:3:78.抛物线y=3x2﹣6x+4的顶点坐标是()A.(1,1) B.(﹣1,1) C.(﹣1,﹣2) D.(1,2)9.从,,,这四个数字中任取两个,其乘积为偶数的概率是()A. B. C. D.10.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.已知抛物线经过和两点,则的值为__________.12.如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在的位置时俯角,在的位置时俯角.若,点比点高.则从点摆动到点经过的路径长为________.13.二次函数y=ax2+4ax+c的最大值为4,且图象过点(-3,0),则该二次函数的解析式为____________.14.如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为_______.15.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“”的概率是________.16.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=2:3,则△ADE与△ABC的面积之比为________.17.如图,矩形纸片ABCD中,AB=6cm,AD=10cm,点E、F在矩形ABCD的边AB、AD上运动,将△AEF沿EF折叠,使点A′在BC边上,当折痕EF移动时,点A′在BC边上也随之移动.则A′C的取值范围为_____.18.抛物线y=(x﹣3)2﹣2的顶点坐标是_____.三、解答题(共66分)19.(10分)化简:(1);(2).20.(6分)解方程:(1)x2-8x+6=0(2)x123x1021.(6分)如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:.22.(8分)已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图1,当点G在CD上时,求证:△AEF≌△DFG;(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD.23.(8分)已知二次函数(m为常数).(1)证明:不论m为何值,该函数的图像与x轴总有两个公共点;(2)当m的值改变时,该函数的图像与x轴两个公共点之间的距离是否改变?若不变,请求出距离;若改变,请说明理由.24.(8分)如图,在中,,,以为原点所在直线为轴建立平面直角坐标系,的顶点在反比例函数的图象上.(1)求反比例函数的解析式:(2)将向右平移个单位长度,对应得到,当函数的图象经过一边的中点时,求的值.25.(10分)如图,在中,,是斜边上的中线,以为直径的分别交、于点、,过点作,垂足为.(1)若的半径为,,求的长;(2)求证:与相切.26.(10分)如图所示,每个小方格都是边长为1的正方形,以点为坐标原点建立平面直角坐标系四边形的顶点的坐标为,顶点的坐标为,顶点的坐标为,请在图中画出四边形关于原点.对称的四边形.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据反比例函数的增减性解答即可.【详解】解:∵k=4>0,∴函数图象在一、三象限,∵∴横坐标为x1,x2的在第三象限,横坐标为x3的在第一象限;∵第三象限内点的纵坐标小于0,第一象限内点的纵坐标大于0,∴y3最大,∵在第三象限内,y随x的增大而减小,∴故答案为B.【点睛】本题考查了反比例函数的增减性,对点所在不同象限分类讨论是解答本题的关键.2、C【解析】根据反比例函数图象的增减性进行判断:根据反比例函数的性质:当时,图象分别位于第一、三象限,在每个象限内,y随x的增大而减小;当时,图象分别位于第二、四象限,在每个象限内,y随x的增大而增大.∵反比例函数的解析式中的,∴点A(1,y1)、B(1,y1)都位于第四象限.又∵1<1,∴y1>y1.故选C.3、D【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.【详解】∵当x=1时,y=6;当x=1时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),由表格中的数据知,抛物线开口向下,∴当y<6时,x<1或x>1.故选D.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.4、C【详解】解:∵m,n是关于x的一元二次方程的两个解,∴m+n=3,mn=a.∵,即,∴,解得:a=﹣1.故选C.5、B【分析】根据二次根式有意义有条件进行求解即可.【详解】要使有意义,则被开方数要为非负数,即,∴,故选B.【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.6、B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=212故选B.7、C【分析】由于DE∥FG∥BC,那么△ADE△AFGABC,根据AD:AF:AB=1:2:4,可得出三个相似三角形的面积比,进而得出△ADE、四边形DFGE、四边形FBCG的面积比.【详解】设△ADE的面积为a,则△AFG和△ABC的面积分别是4a、16a;则分别是3a、12a;则S△ADE:S四边形DFGE:S四边形FBCG=1:3:12故选C.【点睛】本题主要考察相似三角形,解题突破口是根据平行性质推出△ADE△AFGABC.8、A【解析】利用二次函数的性质可求出抛物线的顶点坐标,此题得解(利用配方法找出顶点坐标亦可).【详解】∵a=3,b=﹣6,c=4,∴抛物线的顶点坐标为(),即(1,1).故选A.【点睛】本题考查了二次函数的性质,牢记“二次函数y=ax2+bx+c(a≠0)的顶点坐标是()”是解题的关键.9、C【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是,故选:C.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10、B【解析】试题分析:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程的两根为、,由对称轴x>0,可知>0,即>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,∴当x=﹣1时,y=a﹣b+c<0,故④正确.故选B.考点:二次函数图象与系数的关系.二、填空题(每小题3分,共24分)11、【分析】根据(-2,n)和(1,n)可以确定函数的对称轴x=1,再由对称轴的x=,即可求出b,于是可求n的值.【详解】解:抛物线经过(-2,n)和(1,n)两点,可知函数的对称轴x=1,

∴=1,

∴b=2;

∴y=-x2+2x+1,

将点(-2,n)代入函数解析式,可得n=-1;

故答案是:-1.【点睛】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.12、【分析】如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,由题意可得∠AOP=60°,∠BOQ=30°,进而得∠AOB=90°,设OA=OB=x,分别在Rt△AOP和Rt△BOQ中,利用解直角三角形的知识用含x的代数式表示出OP和OQ,从而可得关于x的方程,解方程即可求出x,然后再利用弧长公式求解即可.【详解】解:如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,∵∠EOA=30°,∠FOB=60°,且OC⊥EF,∴∠AOP=60°,∠BOQ=30°,∴∠AOB=90°,设OA=OB=x,则在Rt△AOP中,OP=OAcos∠AOP=x,在Rt△BOQ中,OQ=OBcos∠BOQ=x,由PQ=OQ﹣OP可得:x﹣x=7,解得:x=7+7cm,则从点A摆动到点B经过的路径长为cm,故答案为:.【点睛】本题考查了解直角三角形的应用和弧长公式的计算,属于常考题型,正确理解题意、熟练掌握解直角三角形的知识是解题的关键.13、y=-4x2-16x-12【解析】∵抛物线的对称轴为直线x==﹣2,∴抛物线的顶点坐标为(﹣2,4),又∵抛物线过点(﹣3,0),∴,解得:a=﹣4,c=﹣12,则抛物线的解析式为y=-4x2-16x-12.故答案为y=-4x2-16x-12.【点睛】本题考查用待定系数法求二次函数解析式,解此题的关键在于先根据顶点坐标与函数系数的关系,求得顶点坐标,再用待定系数法求函数解析式即可.14、【分析】由勾股定理求出BC的长,再证明四边形DEAF是矩形,可得EF=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=9,AC=12,

∴在Rt△ABC中,利用勾股定理得:BC===15,

∵DE⊥AB,DF⊥AC,∠BAC=90°

∴∠DEA=∠DFA=∠BAC=90°,

∴四边形DEAF是矩形,

∴EF=AD,GF=EF

∴当AD⊥BC时,AD的值最小,

此时,△ABC的面积=AB×AC=BC×AD,

∴AD===,

∴EF=AD=,因此EF的最小值为;又∵GF=EF∴GF=×=

故线段GF的最小值为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【详解】∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,

∴随机抽取一张点数为6的扑克,其概率是

故答案为【点睛】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、4:1【解析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=4:1.故答案为:4:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.17、4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C==8(cm);综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.18、(3,﹣2)【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标是(h,k)直接写出即可.【详解】解:抛物线y=(x﹣3)2﹣2的顶点坐标是(3,﹣2).故答案为(3,﹣2).【点睛】此题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.三、解答题(共66分)19、(1);(2)【分析】(1)由整式乘法进行化简,然后合并同类项,即可得到答案;(2)先通分,然后计算分式乘法,再合并同类项,即可得到答案.【详解】解:(1)==;(2)====;【点睛】本题考查了分式的化简求值,分式的混合运算,整式的化简求值,整式的混合运算,解题的关键是熟练掌握运算法则进行解题.20、(1)x1=,x2=-(2)x1=1,x2=1.【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2-8x+6=0x2-8x+16=10(x-1)2=10x-1=±∴x1=,x2=-(2)x123x10x1x1-3x1x-1∴x-1=0或x-1=0解得x1=1,x2=1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.21、见解析.【分析】根据角平分线的定义,可得∠BAC=∠DAC,然后根据平行线的性质,可得∠BAC=∠ACE,从而求出∠DAC=∠ACE,最后根据在同圆或等圆中,相等的圆周角所对的弧也相等即可证出结论.【详解】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵AB∥CE,∴∠BAC=∠ACE,∴∠DAC=∠ACE,∴.【点睛】此题考查的是角平分线的定义、平行线的性质和圆的基本性质,掌握在同圆或等圆中,相等的圆周角所对的弧也相等是解决此题的关键.22、(1)见解析;(2)见解析;(3)见解析.【分析】(1)先用同角的余角相等,判断出∠AEF=∠DFG,即可得出结论;(2)先判断出△AHF≌△DNF,得出AH=DN,FH=FN,进而判断出EH=EN,即可得出结论;(3)先判断出AF=PG,PF=AE,进而判断出PG=PD,得出∠MDG=45°,进而得出∠FGE=∠GDM,判断出△MGN∽△MDG,即可得出结论.【详解】(1)∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°,∵∠EFG=90°,∴∠AFE+∠DFG=90°,∴∠AEF=∠DFG,∵EF=FG,∴△AEF≌△DFG(AAS);(2)如图2,,延长NF,EA相交于H,∴∠AFH=∠DFN,由(1)知,∠EAF=∠D=90°,∴∠HAF=∠D=90°,∵点F是AD的中点,∴AF=DF,∴△AHF≌△DNF(ASA),∴AH=DN,FH=FN,∵∠EFN=90°,∴EH=EN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)如图3,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,同(1)的方法得,△AEF≌△PFG(AAS),∴AF=PG,PF=AE,∵AE=AD,∴PF=AD,∴AF=PD,∴PG=PD,∵∠P=90°,∴∠PDG=45°,∴∠MDG=45°,在Rt△EFG中,EF=FG,∴∠FGE=45°,∴∠FGE=∠GDM,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴,MG2=MN•MD.【点睛】考核知识点:相似三角形判定和性质.作辅助线,构造全等三角形,利用相似三角形解决问题是关键.23、(1)详见解析;(2)图像与轴两个公共点之间的距离为【分析】(1)证明判别式△>0即可证得;(2)将二次函数表达式化简成交点式,得到函数与x轴交点,通过交点可以证明函数的图像与x轴两个公共点之间的距离为定值即可.【详解】解:(1)证明:令,得∴此方程有两个不相等的实数根.∴不论为何值,该函数的图像与轴总有两个公共点.(2)当时,∴图像与轴两个公共点坐标为∴图像与轴两个公共

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论