




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,AB=AC,AE=AD,要使△ACD≌△ABE,需要补充的一个条件是()A.∠B=∠C B.∠D=∠E C.∠BAC=∠EAD D.∠B=∠E2.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥c; B.锐角三角形中最大的角一定大于或等于60°;C.两条直线被第三条直线所截,内错角相等; D.三角形三个内角和等于180°.3.如图,在中,,,则的度数为()A. B. C. D.4.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是A.AB=DE B.∠B=∠E C.EF=BC D.EF//BC5.甲、乙、丙、丁四人进行100短跑训练,统计近期10次测试的平均成绩都是13.2,10次测试成绩的方差如下表,则这四人中发挥最稳定的是()选手甲乙丙丁方差0.200.190.210.22A.甲 B.乙 C.丙 D.丁6.如图,在同一直角坐标系中,直线l1:y=kx和l2:y=(k-2)x+k的位置可能是()A. B. C. D.7.已知等腰三角形的一个外角等于,则它的顶角是()A. B. C.或 D.或8.如果,那么代数式的值为()A.-3 B.-1 C.1 D.39.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(-,1) B.(-1,) C.(,1) D.(-,-1)10.下列调查适合抽样调查的是()A.审核书稿中的错别字 B.企业招聘,对应聘人员进行面试C.了解八名同学的视力情况 D.调查某批次汽车的抗撞击能力11.关于x的方程有增根则a=()A.-10或6 B.-2或-10 C.-2或6 D.-2或-10或612.已知a2+a﹣4=0,那么代数式:a2(a+5)的值是()A.4 B.8 C.12 D.16二、填空题(每题4分,共24分)13.函数的定义域是__________.14.如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB的面积的,OD=2,则△AOB的面积为____.15.已知一组数据:3,4,5,5,6,6,6,这组数据的众数是________.16.如图,是等边三角形,点是的中点,点在的延长线上,点在上且满足,已知的周长为18,设,若关于的方程的解是正数,则的取值范围是______.17.如图,将绕点旋转90°得到,若点的坐标为,则点的坐标为__________.18.如图所示,在中,,将点C沿折叠,使点C落在边D点,若,则______.三、解答题(共78分)19.(8分)如图,在和中,、、、在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.①;②;③;④解:我写的真命题是:在和中,已知:___________________.求证:_______________.(不能只填序号)证明如下:20.(8分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.21.(8分)一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后速度提高匀速行驶,并比原计划提前到达目的地,求前一小时的行驶速度.22.(10分)广州市花都区某校八年级有180名同学参加地震应急演练,对比发现:经专家指导后,平均每秒撤离的人数是专家指导前的3倍,这180名同学全部撤离的时间比专家指导前快2分钟.求专家指导前平均每秒撤离的人数.23.(10分)欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.式子中的a、b的值各是多少?请计算出原题的正确答案.24.(10分)如图所示,在ΔABD和ΔACE中,有下列四个等式:①AB=AC;②AD=AE,③∠1=∠2;④BD=CE.请你以其中三个等式作为题设,余下的一个作为结论,写出一个正确的命题(要求写出已知、要说明的结论及说明过程).25.(12分)如图,ACB和ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:AE=DB;(2)若AD=2,DB=3,求ED的长.26.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)则根据材料回答问题:(1)已知,求x+的值.(2)已知,(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.
参考答案一、选择题(每题4分,共48分)1、C【解析】解:∠BAC=∠EAD,理由是:∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ACD和△ABE中,∵AC=AB,∠CAD=∠BAE,AD=AE,∴△ACD≌△ABE(SAS),选项A,选项B,选项D的条件都不能推出△ACD≌△ABE,只有选项C的条件能推出△ACD≌△ABE.故选C.【点睛】本题考查了全等三角形的判定定理的应用,能正确运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2、C【分析】根据平行线的性质和判定和三角形的内角对每一个选项进行判断即可.【详解】解:A、如果a∥b,b∥c,那么a∥c,是真命题,不符合题意,本选项错误;B、锐角三角形中最大的角一定大于或等于60°,是真命题,不符合题意,本选项错误;C、两条直线被第三条直线所截,若这两条直线平行,则内错角相等,故是假命题,符合题意,本选项正确;D、三角形三个内角和等于180°,真命题,不符合题意,本选项错误;故选:C.【点睛】本题考查了真假命题的判断,掌握平行线的性质和判定和三角形内角问题是解题关键.3、D【分析】由题意根据三角形内角和为180°进行分析计算,即可得解.【详解】解:∵在中,,,∴=180°-90°-54°=36°.故选:D.【点睛】本题考查三角形内角和定理,熟练掌握三角形内角和为180°是解题关键,同时也可利用直角三角形两锐角互余进行分析.4、C【详解】试题分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解:∵AB∥DE,AC∥DF,∴∠A=∠D,AB=DE,则△ABC和△DEF中,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故D选项错误;故选C.考点:全等三角形的判定.5、B【分析】根据方差的定义判断,方差越小数据越稳定.【详解】∵,∴这四人中乙的方差最小,
∴这四人中发挥最稳定的是乙,
故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、C【分析】根据比例系数的正负分三种情况:,,,然后再结合交点横坐标的正负即可作出判断.【详解】当时,解得;当时,正比例函数图象过一、三象限,而一次函数图象过一、二、三象限,两函数交点的横坐标大于0,没有选项满足此条件;当时,正比例函数图象过一、三象限,而一次函数图象过一、二、四象限;两函数交点的横坐标大于0,C选项满足条件;当时,正比例函数图象过二,四象限,而一次函数图象过二、三、四象限;两函数交点的横坐标小于0,没有选项满足此条件;故选:C.【点睛】本题主要考查正比例函数与一次函数的图象,掌握k对正比例函数和一次函数图象的影响是解题的关键.7、D【分析】根据等腰三角形的性质定理与三角形的内角和定理,分两种情况:①若等腰三角形顶角的外角等于110°,②若等腰三角形底角的外角等于110°,分别求出答案即可.【详解】①若等腰三角形顶角的外角等于110°,则它的顶角是:180°-110°=70°,②若等腰三角形底角的外角等于110°,则它的顶角是:180°-2×(180°-110°)=40°,∴它的顶角是:或.故选D.【点睛】本题主要考查等腰三角形的性质定理与三角形的内角和定理,掌握等腰三角形的性质定理是解题的关键.8、D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】解:原式=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.9、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.10、D【分析】根据“抽样调查”和“全面调查”各自的特点结合各选项中的实际问题分析解答即可.【详解】A选项中,“审核书稿中的错别字”适合使用“全面调查”;B选项中,“企业招聘,对应聘人员进行面试”适合使用“全面调查”;C选项中,“了解八名同学的视力情况”适合使用“全面调查”;D选项中,“调查某批次汽车的抗撞击能力”适合使用“抽样调查”.故选D.【点睛】熟知“抽样调查和全面调查各自的特点和适用范围”是解答本题的关键.11、A【分析】先将分式方程化为整式方程,再根据增根的定义求出分式方程的增根,将增根代入整式方程即可求出a的值.【详解】解:①∵关于x的方程有增根∴解得:x=±5将x=5代入①,得a=-10;将x=-5代入①,得a=6综上所述:a=-10或6故选A.【点睛】此题考查的是根据分式方程有增根,求方程中的参数,掌握分式方程的解法和增根的定义是解决此题的关键.12、D【分析】由a2+a﹣4=0,变形得到a2=-(a-4),a2+a=4,先把a2=-(a-4)代入整式得到a2(a+5)=-(a-4)(a+5),利用乘法得到原式=-(a2+a-20),再把a2+a=4代入计算即可.【详解】∵a2+a﹣4=0,∴a2=-(a-4),a2+a=4,a2(a+5)=-(a-4)(a+5)=-(a2+a-20)=−(4−20)=16,故选D【点睛】此题考查整式的混合运算—化简求值,掌握运算法则是解题关键二、填空题(每题4分,共24分)13、【分析】根据二次根式的意义及性质,被开方数大于或等于0,据此作答.【详解】根据二次根式的意义,被开方数,解得.故函数的定义域是.故答案为:.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.掌握二次根式的概念和性质是关键.14、.【分析】首先过点F作FM⊥AO,根据等腰直角三角形的性质判定△DOC≌△CMF,得出CM=OD=2,MF=OC,然后判定△AMF是等腰直角三角形,利用面积关系,构建一元二次方程,即可得解.【详解】过点F作FM⊥AO于点M,如图:则有:∠O=∠FMC=90°,∴∠1+∠2=90°,∵等腰直角△CDF,∴CF=CD,∠DCF=90°,∴∠2+∠3=90°,∴∠1=∠3,又∵∠O=∠FMC=90°,CF=CD,∴△DOC≌△CMF(AAS),∴CM=OD=2,MF=OC,∵∠AOB=90°,OA=OB,FM⊥AO,∴△AMF是等腰直角三角形,∴AM=MF=CO,设AM=MF=CO=x,则OA=OB=2x+2,CD=CF=,由△CDF的面积是△AOB的面积的,得:()2=(2x+2)2,解得:x=1.5,∴△AOB的面积=(2x+2)2=;故答案为:.【点睛】此题主要考查等腰直角三角形以及全等三角形的判定与性质,解题关键是利用面积关系构建方程.15、1【分析】根据众数的定义,即可得到答案.【详解】∵3,4,5,5,1,1,1中1出现的次数最多,∴这组数据的众数是:1.故答案是:1.【点睛】本题主要考查众数的定义,掌握“一组数据中,出现次数最多的数,称为众数”是解题的关键.16、且.【分析】过P作PE∥BC交AC于点E,先证明是等边三角形,再证明和,然后转化边即得的值,进而求解含参分式方程的解,最后在解为正数和非增根的情况下求解参数,即得取值范围.【详解】解:过P作PE∥BC交AC于点E∴∵是等边三角形∴∠A=∠ABC=∠ACB=,∴,∴,∴是等边三角形∴,∴∴∵P点是AB的中点∴∴,∵∴∴∴在与中∴∴∴∴∵的周长为18,∴∴∵∴∴∵的解是正数∴∴且故答案为:且【点睛】本题考查等边三角形的性质和判定、全等三角形的判定和分式方程含参问题,利用等边三角形及边上中点作平行线构造全等三角形和等边三角形是解题关键,解决分式方程的含参问题关键是找清楚解所满足的条件,分式方程的解满足非增根这个隐含条件是易错点.17、【分析】根据点A的坐标得出点A到x轴和y轴的距离,以此得出旋转后到x轴和y轴的距离,得出的坐标.【详解】已知点的坐标为,点A到x轴的距离为b,点A到y轴的距离为a,将点A绕点旋转90°得到点,点到x轴的距离为a,点到y轴的距离为b,点在第二象限,所以点的坐标为.故答案为:.【点睛】本题考查了坐标轴上的点绕原点旋转的问题,熟练掌握计算变化后的点的横坐标和纵坐标是解题的关键.18、1【分析】根据折叠的性质可得∠EDA=90°,ED=EC=6cm,再根据直角三角形30°角所对边是斜边的一半可得AE,从而可得AC.【详解】解:根据折叠的性质DE=EC=6cm,∠EDB=∠C=90°,∴∠EDA=90°,∵∠A=30°,∴AE=2DE=12cm,∴AC=AE+EC=1cm,故答案为:1.【点睛】本题考查折叠的性质,含30°角的直角三角形.理解直角三角形斜边上的中线等于斜边的一半.三、解答题(共78分)19、已知:B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠ABC=∠DEF.证明见解析;或已知:B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.求证:AC=DF.证明见解析(任选其一即可)【分析】根据题意可将①②④作为题设,③作为结论,然后写出已知和求证,再利用SSS即可证出△ABC≌△DEF,从而证出结论;或将①③④作为题设,②作为结论,然后写出已知和求证,再利用SAS即可证出△ABC≌△DEF,从而证出结论,.【详解】将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠ABC=∠DEF.证明:∵BE=CF,∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF.或将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.求证:AC=DF.证明:∵BE=CF,∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴AC=DF.以上两种方法任选其一即可.【点睛】此题考查的是全等三角形的判定及性质,掌握全等三角形的各个判定定理是解决此题的关键.20、(1)见解析;(2)见解析【分析】(1)根据等边三角形的性质,得出∠BAC=∠ACB=60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA,然后结合(1)可得∠MDC=∠BAD,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BAD=60°﹣∠DAE,∠EDC=60°﹣∠E,又∵DE=DA,∴∠E=∠DAE,∴∠BAD=∠EDC.(2)由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=60°,∴△ADM是等边三角形,∴AD=AM.【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.21、.【分析】设前一小时的行驶速度为,则后来的速度为,根据他提前20分钟到达目的地,等量关系式为:加速后的时间+20分钟+1小时=原计划用的时间,列方程求解即可.【详解】设前一小时的行驶速度为,则后来的速度为,由题意得,,解得:,经检验:是原方程的解且符合题意,答:前一小时的行驶速度为.故答案为:【点睛】通过设前一小时的行驶速度,根据加速前后时间的等量关系列出方程,求解即可得出答案,注意加速后行驶的路程为150千米前一小时按原计划行驶的路程.22、1人【分析】设专家指导前平均每秒撤离的人数为x人,根据题意列出分式方程,解分式方程并检验即可.【详解】设专家指导前平均每秒撤离的人数为x人,根据题意有解得将检验,是原分式方程的解答:专家指导前平均每秒撤离的人数为1人【点睛】本题主要考查分式方程的应用,读懂题意,列出分式方程是解题的关键.23、(1),;(2)
【分析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.【详解】根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【点睛】本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.24、已知:AB=AC,AD=AE,BD=CE,求证:∠1=∠2,证明见解析【解析】试题分析:有两种情形①②③⇒④或①②④⇒③.根据SAS或SSS即可证明.试题解析:在△ABD和△ACE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届内蒙古呼伦贝尔市海拉尔区铁路第三中学英语八下期中达标测试试题含答案
- 2025年家具行业个性化定制生产绿色生产市场前景报告
- 2025年元宇宙时代基础设施建设:区块链技术深度应用案例分析报告
- 2025年元宇宙社交平台虚拟现实与虚拟现实房地产游戏化应用创新研究报告
- 2025年元宇宙社交平台虚拟现实社交平台技术融合与创新趋势报告
- 2025年医院电子病历系统优化提升医疗数据质量深度报告
- 金融机构数字化转型下风险管理的智能化与自动化报告001
- 2025届内蒙古乌兰察布市化德县英语八下期末考试模拟试题含答案
- 2025届湖北省十堰市部分学校英语八下期中调研模拟试题含答案
- 2025年医药企业研发外包(CRO)模式下的质量控制体系构建与实施报告
- 答案二语习得
- 黄金的冶炼工艺流程
- 注塑成型工艺流程图
- 美术学院 本科培养方案 - 清华大学 - Tsinghua University
- 项目延期申请表(样本)
- 《中国脑卒中护理指导规范(2021年版)》课件
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
- 三基训练习题集-风湿免疫科(题目及答案)
- 无损检测射线常见缺陷图集
- 冷却塔填料施工组织设计方案和安全措施
- 盘扣式脚手架模板与支撑架专项施工方案
评论
0/150
提交评论