版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合的真子集的个数为()A.7 B.8 C.31 D.322.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为()A. B. C. D.3.已知函数,,的零点分别为,,,则()A. B.C. D.4.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.5.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.46.已知为非零向量,“”为“”的()A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件7.设,集合,则()A. B. C. D.8.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为()A. B. C. D.9.已知中,,则()A.1 B. C. D.10.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.11.已知函数,则()A. B. C. D.12.函数fxA. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面向量与的夹角为,,,则________.14.对任意正整数,函数,若,则的取值范围是_________;若不等式恒成立,则的最大值为_________.15.若,则=______,=______.16.各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图为某大江的一段支流,岸线与近似满足∥,宽度为.圆为江中的一个半径为的小岛,小镇位于岸线上,且满足岸线,.现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切.设.(1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?18.(12分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.19.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且.(Ⅰ)求证:面;(Ⅱ)求证:平面平面;(Ⅲ)求该几何体的体积.20.(12分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.21.(12分)已知函数,其中.(1)当时,求在的切线方程;(2)求证:的极大值恒大于0.22.(10分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的平均数和众数;(2)将表示为的函数;(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】
计算,再计算真子集个数得到答案.【题目详解】,故真子集个数为:.故选:.【答案点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.2.A【答案解析】
联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【题目详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,·=0,因为,,由平面向量垂直的坐标表示可得,,因为,所以a2-c2=ac,两边同时除以可得,,解得e=或(舍去),所以该椭圆的离心率为.故选:A【答案点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.3.C【答案解析】
转化函数,,的零点为与,,的交点,数形结合,即得解.【题目详解】函数,,的零点,即为与,,的交点,作出与,,的图象,如图所示,可知故选:C【答案点睛】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.4.D【答案解析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【题目详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【答案点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.5.B【答案解析】
因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【题目详解】请在此输入详解!6.B【答案解析】
由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【题目详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【答案点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.7.B【答案解析】
先化简集合A,再求.【题目详解】由得:,所以,因此,故答案为B【答案点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.8.A【答案解析】
根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【题目详解】由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.故选:A.【答案点睛】本题考查古典概型概率,解题关键是求出基本事件的个数.9.C【答案解析】
以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【题目详解】,,.故选:C.【答案点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.10.B【答案解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【题目详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【答案点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.11.A【答案解析】
根据分段函数解析式,先求得的值,再求得的值.【题目详解】依题意,.故选:A【答案点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.12.A【答案解析】
由f12=e-14>0排除选项D;【题目详解】由f12=e-14>0,可排除选项D,f-1=-e【答案点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→0二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
根据已知求出,利用向量的运算律,求出即可.【题目详解】由可得,则,所以.故答案为:【答案点睛】本题考查向量的模、向量的数量积运算,考查计算求解能力,属于基础题.14.【答案解析】
将代入求解即可;当为奇数时,,则转化为,设,由单调性求得的最小值;同理,当为偶数时,,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值.【题目详解】由题,,解得.当为奇数时,,由,得,而函数为单调递增函数,所以,所以;当为偶数时,,由,得,设,,单调递增,,所以,综上可知,若不等式恒成立,则的最大值为.故答案为:(1);(2)【答案点睛】本题考查利用导函数求最值,考查分类讨论思想和转化思想.15.10【答案解析】
①根据换底公式计算即可得解;②根据同底对数加法法则,结合①的结果即可求解.【题目详解】①由题:,则;②由①可得:.故答案为:①1,②0【答案点睛】此题考查对数的基本运算,涉及换底公式和同底对数加法运算,属于基础题目.16.【答案解析】
将已知由前n项和定义整理为,再由等比数列性质求得公比,最后由数列各项均为正数,舍根得解.【题目详解】因为即又等比数列各项均为正数,故故答案为:【答案点睛】本题考查在等比数列中由前n项和关系求公比,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),定义域是.(2)百万【答案解析】
(1)以为原点,直线为轴建立如图所示的直角坐标系,设,利用直线与圆相切得到,再代入这一关系中,即可得答案;(2)利用导数求函数的最小值,即可得答案;【题目详解】以为原点,直线为轴建立如图所示的直角坐标系.设,则,,.因为,所以直线的方程为,即,因为圆与相切,所以,即,从而得,在直线的方程中,令,得,所以,所以当时,,设锐角满足,则,所以关于的函数是,定义域是.(2)要使建造此通道费用最少,只要通道的长度即最小.令,得,设锐角,满足,得.列表:0减极小值增所以时,,所以建造此通道的最少费用至少为百万元.【答案点睛】本题考查三角函数模型的实际应用、利用导数求函数的最小值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.18.(1)见解析(2)见解析【答案解析】
(1)利用导函数的正负确定函数的增减.(2)函数在有两个零点,即方程在区间有两解,令通过二次求导确定函数单调性证明参数范围.【题目详解】解:(1)证明:因为,当时,,,所以在区间递减;当时,,所以,所以在区间递增;且,所以函数的极小值点为1(2)函数在有两个零点,即方程在区间有两解,令,则令,则,所以在单调递增,又,故存在唯一的,使得,即,所以在单调递减,在区间单调递增,且,又因为,所以,方程关于的方程在有两个零点,由的图象可知,,即.【答案点睛】本题考查利用导数研究函数单调性,确定函数的极值,利用二次求导,零点存在性定理确定参数范围,属于难题.19.(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ).【答案解析】
(I)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(II)利用,证得平面,从而得到平面,由此证得平面平面.(III)作交于点,易得面,利用棱锥的体积公式,计算出棱锥的体积.【题目详解】(Ⅰ)取的中点,连接,则,,故四边形为平行四边形.故.又面,平面,所以面.(Ⅱ)为等边三角形,为中点,所以.又,所以面.又,故面,所以面平面.(Ⅲ)几何体是四棱锥,作交于点,即面,.【答案点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查四棱锥体积的求法,考查空间想象能力,所以中档题.20.(1)见解析;(2)证明见解析.【答案解析】
当时,求函数的导数,判断导函数的单调性,计算即为导函数的零点;
当时,分类讨论x的范围,可令新函数,计算新函数的最值可证明.【题目详解】(1)的定义域为当时,,,易知为上的增函数,又,所以是的唯一零点;(2)证明:当时,,①若,则,所以成立,②若,设,则,令,则,因为,所以,从而在上单调递增,所以,即,在上单调递增;所以,即,故.【答案点睛】本题主要考查导数法研究函数的单调性,单调性,零点的求法.注意分类讨论和构造新函数求函数的最值的应用.21.(1)(2)证明见解析【答案解析】
(1)求导,代入,求出在处的导数值及函数值,由此即可求得切线方程;(2)分类讨论得出极大值即可判断.【题目详解】(1),当时,,,则在的切线方程为;(2)证明:令,解得或,①当时,恒成立,此时函数在上单调递减,∴函数无极值;②当时,令,解得,令,解得或,∴函数在上单调递增,在,上单调递减,∴;③当时,令,解得,令,解得或,∴函数在上单调递增,在,上单调递减,∴,综上,函数的极大值恒大于0.【答案点睛】本小题主要考查利用导数求切线方程,考查利用导数研究函数的极值,考查分类讨论的数学思想方法,属于中档题.22.(1),众数为150;(2);(3)【答案解析】
(1)由频率直方图分别求出各组距内的频率,由此能求出这个开学季内市场需求量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 啤酒酿造行业市场调研分析报告
- 不动产的金融评估行业市场调研分析报告
- 医用细胞产品供应链分析
- 药用黄精项目营销计划书
- 与计算机连用的打印机的出租行业经营分析报告
- T恤衫刺绣服务行业营销策略方案
- 芭蕾舞软鞋项目运营指导方案
- 加油站发油泵产品供应链分析
- 电子音频设备减振器细分市场深度研究报告
- 包扎用填料产业链招商引资的调研报告
- 医保按病种分值付费(DIP)院内培训
- 《矿井一通三防》课件
- 通信工程专业导论(第1-3章)
- 智慧课堂 课件 第四章 智慧课堂支撑环境 第二节 云端一体化智慧教与学平台
- 智鼎在线测评IQT题库
- 消防应急照明系统施工方案
- 临床中西医结合疾病诊断与治疗
- 教科版三年级科学上册全册单元测试卷及答案
- 骨折内固定取出护理查房
- 《基本医疗卫生与健康促进法》试题
- 浙江义乌中学吴加澍
评论
0/150
提交评论