版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一个正比例函数的图象过点(2,﹣3),它的表达式为()A. B. C. D.2.计算的结果是()A. B. C. D.3.已知关于的分式方程的解是非负数,则的取值范围是()A. B. C.且 D.且4.下列计算中,不正确的是()A. B.C. D.5.估计的值在()A.和之间 B.和之间 C.和之间 D.和之间6.已知直线,若,则此直线的大致图像可能是()A. B. C. D.7.如图,三点在边长为1的正方形网格的格点上,则的度数为()A. B. C. D.8.下列多项式中,能分解因式的是()A.m2+n2 B.-m2-n2 C.m2-4m+4 D.m2+mn+n29.如图,点在上,且,若要使≌,可补充的条件不能是()A. B.平分 C. D.10.某校对1200名女生的身高进行了测量,身高在,这一小组的频率为,则该组的人数为()A.150人 B.300人 C.600人 D.900人二、填空题(每小题3分,共24分)11.已知x+y=1,则x²xyy²=_______12.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.13.用直尺和圆规作一个角等于已知角的示意图如下,则要说明,需要说明,则这两个三角形全等的依据是________.(写出全等的简写)14.等腰三角形有一个角为,则它的底边与它一腰上的高所在直线相交形成的锐角等于_____度.15.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他的步行速度为_____千米/小时.16.在等腰直角三角形ABC中,,在BC边上截取BD=BA,作的平分线与AD相交于点P,连接PC,若的面积为10cm2,则的面积为___________.17.如图,中,,将沿翻折后,点落在边上的点处.如果,那么的度数为_________.18.纳米是非常小的长度单位,,将用科学记数法表示为__________.三、解答题(共66分)19.(10分)如图,在△ABC中,AC=6,BC=8,DE是△ABD的边AB上的高,且DE=4,AD=,BD=.求证:△ABC是直角三角形.20.(6分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.21.(6分)先阅读理解下面的例题,再按要求解答:例题:解不等式解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得,解不等式组②得,所以不等式的解集为或.问题:求不等式的解集.22.(8分)如图,小区有一块四边形空地,其中.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点作了垂直于的小路.经测量,,,.(1)求这块空地的面积;(2)求小路的长.(答案可含根号)23.(8分)如图,在中,,点在内,,,点在外,,.(1)求的度数.(2)判断的形状并加以证明.(3)连接,若,,求的长.24.(8分)计算:(1)﹣(1﹣)0;(2)3.25.(10分)已知,求代数式的值26.(10分)(1);(2)
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据待定系数法求解即可.【详解】解:设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.【点睛】本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键.2、A【解析】根据同底数幂的乘法公式进行计算即可得解.【详解】根据同底数幂的乘法公式(m,n都是正整数)可知,故选:A.【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法公式是解决本题的关键.3、C【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【详解】解:去分母得,
m-1=x-1,
解得x=m-2,
由题意得,m-2≥0,
解得,m≥2,
x=1是分式方程的增根,所有当x=1时,方程无解,即m≠1,
所以m的取值范围是m≥2且m≠1.
故选C.【点睛】本题考查的是分式方程的解法和一元一次不等式的解法,理解分式方程的增根的判断方法是解题的关键.4、D【分析】根据幂的乘方、合并同类项法则、同底数幂的除法和同底数幂的乘法逐一判断即可.【详解】A.,故本选项正确;B.,故本选项正确;C.,故本选项正确;D.,故本选项错误.故选D.【点睛】此题考查的是幂的运算性质和合并同类项,掌握幂的乘方、合并同类项法则、同底数幂的除法和同底数幂的乘法是解决此题的关键.5、D【分析】利用算术平方根进行估算求解.【详解】解:∵∴故选:D.【点睛】本题考查无理数的估算,掌握算术平方根的概念正确进行计算从而进行估算是本题的解题关键.6、B【分析】根据一次函数解析式系数k,b的几何意义,逐一判断选项,即可.【详解】图A中,k>0,b>0,kb>0,不符合题意,图B中,k>0,b<0,kb<0,符合题意,图C中,k<0,b<0,kb>0,不符合题意,图D中,k<0,b=0,kb=0,不符合题意,故选B.【点睛】本题主要考查一次函数的系数k,b的几何意义,掌握k,b的正负性与一次函数图象的位置关系是解题的关键.7、B【解析】利用勾股定理求各边的长,根据勾股定理的逆定理可得结论.【详解】连接BC,
由勾股定理得:,,,∵,∴,且AB=BC,
∴∠ABC=90°,∴∠BAC=45°,
故选:B.【点睛】此题主要考查了勾股定理、勾股定理的逆定理以及等腰直角三角形性质和判定.熟练掌握勾股定理和勾股定理的逆定理是解题的关键.8、C【分析】观察四个选项,都不能用提公因式法分解,再根据平方差公式和完全平方公式的特点对各项进行判断即可.【详解】解:A、m2+n2不能分解因式,本选项不符合题意;B、-m2-n2不能分解因式,本选项不符合题意;C、,能分解因式,所以本选项符合题意;D、m2+mn+n2不能分解因式,本选项不符合题意.故选:C.【点睛】本题考查了多项式的因式分解,熟知平方差公式和完全平方公式的结构特征是解此题的关键.9、D【分析】根据全等三角形的判定方法即可依次判断.【详解】A、∵,,∴∠CAB=∠DAB,又AB=AB,根据AAS即可推出≌,正确,故本选项错误;B、平分,∴∠CAB=∠DAB,又AB=AB,根据AAS即可推出≌,正确,故本选项错误;C、∵∠1=∠2,1+∠ABC=180,∠2+∠ABD=180,∴∠ABC=∠ABD,又、AB=AB,根据SAS即可推出≌,正确,故本选项错误;D、根据和AB=AB,∠ABC=∠ABD不能推出≌,错误,故本选项正确;故选:D.【点睛】本题考查了全等三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10、B【解析】根据频率=频数÷总数,得频数=总数×频率.【详解】解:根据题意,得
该组的人数为1200×0.25=300(人).
故选:B.【点睛】本题考查了频率的计算公式,理解公式.频率=能够灵活运用是关键.二、填空题(每小题3分,共24分)11、【分析】根据完全平方公式即可得出答案.【详解】∵x+y=1∴∴【点睛】本题考查的是完全平方公式:.12、9【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E.
F分别是AO、AD的中点,(cm),,,△AEF的周长=故答案为9.13、【分析】利用作法得到△C′O′D′和△COD的三边对应相等,从而根据”SSS“可证明△C′O′D′≌△COD,然后根据全等三角形的性质得到∠A′O′B′=∠AOB.【详解】由作法得OD=OC=OD′=OC′,CD=C′D′,则根据“SSS”可判断△C′O′D′≌△COD,所以∠A′O′B′=∠AOB.故答案为SSS.【点睛】本题考查全等三角形的判定,作一个角等于已知角.熟练掌握作一个角等于已知角的作法并且掌握其原理是解决此题的关键.14、或.【分析】先分情况讨论为顶角或者底角,再根据各情况利用三角形内角和定理求解即可.【详解】解:①当等腰底角时如下图:过B作垂足为D∴∵在等腰中,∴在中,∴此时底边与它一腰上的高所在直线相交形成的锐角等于.②当等腰顶角时如下图:过B作垂足为D∴∵在等腰中,∴∴在中,∴此时底边与它一腰上的高所在直线相交形成的锐角等于.综上所述:等腰三角形顶角为,则底边与它一腰上高所在直线相交形成的锐角等于;等腰三角形底角为,则底边与它一腰上高所在直线相交形成的锐角等于.故答案为:或.【点睛】本题考查等腰三角形的性质及三角形的内角和定理,分类讨论思想是解决等腰三角形计算问题的关键,注意空后有单位时填写答案不需要带单位.15、4【分析】先设他骑自行车的速度每小时走x千米,根据他步行12千米所用的时间与骑自行车36千米所用的时间相等,列出方程,求出方程的解即可求出骑自行车的速度,再根据步行速度=骑自行车速度-8可得出结论.【详解】设他骑自行车的速度每小时走x千米,根据题意得:=解得:x=12,经检验:x=12是原分式方程的解.则步行的速度=12-8=4.答:他步行的速度是4千米/小时.故答案为4.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.16、5cm1【分析】根据等腰三角形底边上的三线合一的性质可得AP=PD,然后根据等底等高的三角形面积相等求出△BPC的面积等于△ABC面积的一半,代入数据计算即可得解.【详解】∵BD=BA,BP是∠ABC的平分线,
∴AP=PD,
∴S△BPD=S△ABD,S△CPD=S△ACD,
∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,
∵△ABC的面积为10cm1,
∴S△BPC=×10=5(cm1).
故答案为:5cm1.【点睛】本题考查了等腰三角形底边上的三线合一的性质,三角形的面积的运用,利用等底等高的三角形的面积相等求出△BPC的面积与△ABC的面积的关系是解题的关键.17、70°【分析】首先由折叠的性质,得出∠A=∠DA′E,∠ADE=∠A′DE,∠AED=∠A′ED,然后根据,得出∠AED=∠A′ED=55°,再由三角形内角和定理即可得解.【详解】由已知,得∠A=∠DA′E,∠ADE=∠A′DE,∠AED=∠A′ED∵∴∠AED=∠A′ED=(180°-∠A′EC)=(180°-70°)=55°又∵∴∠ADE=∠A′DE=180°-∠A-∠AED=180°-55°-55°=70°故答案为70°.【点睛】此题主要考查利用三角形翻折的性质求角的度数,熟练掌握,即可解题.18、.【分析】利用科学记数法的表示形式:(),先将转化为,即可得出结果.【详解】解:∵∴故答案为:【点睛】本题主要考查的是科学记数法,掌握科学记数法的表示形式以及正确的应用是解题的关键.三、解答题(共66分)19、详见解析【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股逆定理的逆定理可证△ABC是直角三角形.【详解】证明:DE是AB边上的高,∴∠AED=∠BED=90°,在Rt△ADE中,在Rt△BDE中,∴AB=2+8=1.在△ABC中,由AB=1,AC=6,BC=8,∵∴∴△ABC是直角三角形.【点睛】本题考查了勾股定理和勾股定理的逆定理,正确理解定理的内容是关键.20、(1)y=-x+6;(2)12;(3)或.【分析】(1)利用待定系数法,即可求得函数的解析式;(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.【详解】(1)设直线AB的函数解析式是y=kx+b,根据题意得:,解得:,∴直线AB的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,∴;(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,解得:,即直线OA的解析式是:,∵△ONC的面积是△OAC面积的,∴点N的横坐标是,当点N在OA上时,x=1,y=,即N的坐标为(1,),当点N在AC上时,x=1,y=5,即N的坐标为(1,5),综上所述,或.【点睛】本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.21、.【分析】仿造例题,将所求不等式变形为不等式组,然后进一步求取不等式组的解集最终得出答案即可.【详解】∵两数相乘(或相除),异号得负,∴由不等式可得:或,解不等式组①得:,解不等式组②得:该不等式组无解,综上所述,所以原不等式解集为:.【点睛】本题主要考查了不等式组解集的求取,熟练掌握相关方法是解题关键.22、(1)(2+14)m2;(2)【分析】(1)根据AB和BC算出AC的长,再由AD和CD的长得出△ACD是直角三角形,分别算出△ABC和△ACD的面积即可;(2)利用三角形面积的两种不同表示方法,即×AB×AC=×BC×AE可得AE的长.【详解】解:(1)∵AB⊥AC,AB=4,BC=9,∴在△ABC中,==,∵CD=4,AD=7,,即:,∴空地ABCD的面积=S△ABC+S△ADC=×AB×AC+×AD×CD=(2+14)m2;(2)在△ABC中,S△ABC=×AB×AC=×BC×AE,可得AB×AC=BC×AE,即4×=9×AE解得AE=.答:小路AE的长为m.【点睛】本题考查了勾股定理及其逆定理,用勾股定理求出直角三角形第三边长,用逆定理判定三角形为直角三角形是解题的关键,同时会利用三角形面积算法求直角三角形斜边上的高.23、(1)∠ADC=150°;(2)△ACE是等边三角形,证明见解析;(2)DE=1.【分析】(1)先证明△DBC是等边三角形,根据SSS证得△ADC≌△ADB,得到∠ADC=∠ADB即可得到答案;(2)证明△ACD≌△ECB得到AC=EC,利用即可证得的形状;(2)根据及等边三角形的性质求出∠EDB=20°,利用求出∠DBE=90°,根据△ACD≌△ECB,AD=2,即可求出DE的长.【详解】(1)∵BD=BC,∠DBC=10°,∴△DBC是等边三角形.∴DB=DC,∠BDC=∠DBC=∠DCB=10°.在△ADB和△ADC中,,∴△ADC≌△ADB.∴∠ADC=∠ADB.∴∠ADC=(210°﹣10°)=150°.(2)△ACE是等边三角形.理由如下:∵∠ACE=∠DCB=10°,∴∠ACD=∠ECB.∵∠CBE=150°,∠ADC=150°∴∠ADC=∠EBC.在△ACD和△ECB中,,∴△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国企负责人考核制度
- 静脉采血培训考核制度
- 叉车行业考核制度模板
- 物业品质管理考核制度
- 双拥工作站考核制度
- 拖车员工考核制度范本
- 昆明市官渡区网格员招聘笔试题库含答案
- 《公共营养师》理论知识练习题及参考答案
- 成都医院三基三严考试题及答案
- 植物素描考试试题及答案
- (2025版)中国焦虑障碍防治指南
- 46566-2025温室气体管理体系管理手册及全套程序文件
- GB/T 26951-2025焊缝无损检测磁粉检测
- 2024绍兴文理学院元培学院教师招聘考试真题及答案
- 下腔静脉滤器置入术课件
- 地方扑火队管理制度
- 信访工作法治化培训讲座
- 船舶年度检修报告范文
- 高血压营养和运动指导原则(2024年版)
- DB4403T399-2023居家适老化改造与管理规范
- 光学干涉测量技术
评论
0/150
提交评论