版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.两千多年前,古希腊数学家欧几里得首次运用某种数学思想整理了几何知识,完成了数学著作《原本》,欧几里得首次运用的这种数学思想是()A.公理化思想 B.数形结合思想 C.抽象思想 D.模型思想2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A. B. C. D.3.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有(
)A.5个 B.4个 C.3个 D.2个4.如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm5.已知为正整数,也是正整数,那么满足条件的的最小值是()A.3 B.12 C.2 D.1926.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形的面积等于一条边的长与该边上的高的乘积的一半D.同位角相等7.对于一次函数y=x+1的相关性质,下列描述错误的是()A.y随x的增大而增大; B.函数图象与x轴的交点坐标为(1,0);C.函数图象经过第一、二、三象限; D.函数图象与坐标轴围成的三角形面积为.8.下列因式分解正确的是()A.x2-6x+9=(x-3)2 B.x2-y2=(x-y)2 C.x2-5x+6=(x-1)(x-6) D.6x2+2x=x(6x+2)9.一项工程,一半由甲单独做需要m小时完成,另一半由乙单独做需要n小时完成,则甲、乙合做这项工程所需的时间为()A.小时 B.小时 C.小时 D.小时10.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF,其中正确的结论个数有.()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.如图,中,cm,cm,cm,是边的垂直平分线,则的周长为______cm.12.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被墨水弄污了,你认为□处应填写_________.13.若等腰三角形一腰上的中线把这个三角形的周长分成为12cm和21cm两部分,则这个等腰三角形的底边长为_______.14.如图,已知点.规定“把点先作关于轴对称,再向左平移1个单位”为一次变化.经过第一次变换后,点的坐标为_______;经过第二次变换后,点的坐标为_____;那么连续经过2019次变换后,点的坐标为_______.15.如图,平面直角坐标系中有点A(0,1)、B(,0).连接AB,以A为圆心,以AB为半径画弧,交y轴于点P1;连接BP1,以B为圆心,以BP1为半径画弧,交x轴于点P2;连接P1P2,以P1为圆心,以P1P2为半径画弧,交y轴于点P3;按照这样的方式不断在坐标轴上确定点Pn的位置,那么点P6的坐标是_____.16.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是_____.17.如图,AB⊥y轴,垂足为B,∠BAO=30°,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-x上,依次进行下去…若点B的坐标是(0,1),则点O2020的纵坐标为__________;18.如图,,平分,过作交于于点,若点在射线上,且满足,则的度数为_________.三、解答题(共66分)19.(10分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.20.(6分)已知:从边形的一个顶点出发共有条对角线;从边形的一个顶点出发的所有对角线把边形分成个三角形;正边形的边长为,周长为.求的值.21.(6分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,的顶点都在格点上.(1)直接写出点的坐标;(2)试判断是不是直角三角形,并说明理由.22.(8分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克;(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.23.(8分)如图1,△ABC为等边三角形,点E、F分别在BC和AB上,且CE=BF,AE与CF相交于点H.(1)求证:△ACE≌△CBF;(2)求∠CHE的度数;(3)如图2,在图1上以AC为边长再作等边△ACD,将HE延长至G使得HG=CH,连接HD与CG,求证:HD=AH+CH24.(8分)为参加学校艺术节闭幕演出,八年级一班欲租用男、女演出服装若干套以供演出时使用,已知4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元.(1)租用男装、女装一天的价格分别是多少?(2)由于演出时间错开租用高峰时段,男装、女装一天的租金分别给予9折和8折优惠,若该班演出团由5名男生和12名女生组成,求在演出当天该班租用服装实际支付的租金是多少?25.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.26.(10分)(1)解方程:;(2)解方程:.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据欧几里得和《原本》的分析,即可得到答案.【详解】解:∵《原本》是公理化思想方法的一个雏形。∴欧几里得首次运用的这种数学思想是公理化思想;故选:A.【点睛】本题考查了公理化思想来源,解题的关键是对公理化思想的认识.2、A【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点睛】本题考查二元一次方程组的实际应用,属于和差倍分问题,只需要找准数量间的关系,难度较小.3、C【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有-1的偶次幂都等于1.【详解】如果(x+6)x+1=1成立,则x+1=0或x+6=1或-1,即x=-1或x=-5或x=-7,当x=-1时,(x+6)0=1,当x=-5时,1-4=1,当x=-7时,(-1)-6=1,故选C.【点睛】本题考查了零指数幂的意义和1的指数幂,关键是熟练掌握零指数幂的意义和1的指数幂.4、D【解析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.5、A【分析】因为是正整数,且==,因为是整数,则1n是完全平方数,可得n的最小值.【详解】解:∵是正整数,则==,是正整数,∴1n是完全平方数,满足条件的最小正整数n为1.故选A.【点睛】此题主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则,解题关键是分解成一个完全平方数和一个代数式的积的形式.6、D【分析】根据三角形内角和定理对A进行判断;根据三角形三边的关系对B进行判断;根据三角形面积公式对C进行判断;根据同位角的定义对D进行判断.【详解】A、三角形三个内角的和等于180°,所以A选项为真命题;
B、三角形两边之和大于第三边,所以B选项为真命题;
C、三角形的面积等于一条边的长与该边上的高的乘积的一半,所以C选项为真命题,
D、两直线平行,同位角相等,所以D选项为假命题.
故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7、B【分析】由一次函数图像的性质可知:一次函数y=x+1中,,可判断A、C,把分别代入一次函数即可判断B、D.【详解】∵一次函数y=x+1,∴,∴函数为递增函数,∴y随x的增大而增大,A正确;令,得:,∴函数图象与x轴的交点坐标为,∴B不正确;∵,∴函数图象经过第一、二、三象限,∴C正确;令,得:,∴函数图象与坐标轴围成的三角形面积为:,∴D正确;故选:B.【点睛】本题考查的是一次函数图象的性质,熟练掌握一次函数图象的性质是解答本题的关键.8、A【解析】分析:根据相关分解因式的方法进行分析判断即可.详解:A选项中,因为,所以A中分解正确;B选项中,因为,所以B中分解错误;C选项中,因为,所以C中分解错误;D选项中,因为,所以D中分解错误.故选A.点睛:解答本题有以下两个要点:(1)熟练掌握“常用的分解因式的方法”;(2)分解因式要彻底,即要直到每个因式都不能再分解为止.9、D【解析】根据题意得出甲的效率为、乙的效率为,再根据工作时间=工作量÷甲乙合作的工作效率可得答案.【详解】根据题意,甲、乙合做这项工程所需的时间为=,故选D.【点睛】本题主要考查列代数式,解题的关键是掌握工程问题中的基本关系式及代数式的书写规范.10、B【分析】先根据已知条件证明△AEF≌△ABC,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.【详解】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FD,B可得∠EAD=∠BFD,∴∠BFD=∠CAF.综上可知:②③④正确.故选:B.【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.二、填空题(每小题3分,共24分)11、16【解析】根据垂直平分线的性质得到AD=BD,AE=BE,再根据三角形的周长组成即可求解.【详解】∵是边的垂直平分线,∴AD=BD,AE=BE∴的周长为AD+CD+AC=BD+CD+AC=BC+AC=10+6=16cm,故填16.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知垂直平分线的性质.12、3xy【解析】试题解析:根据题意,得故答案为13、5cm【分析】根据题意作出图形,设AD=DC=x,BC=y,然后分两种情况列出方程组求解,再根据三角形的三边关系判断即可求解【详解】解:如图所示,设AD=DC=x,BC=y,由题意得或解之:或当时等腰三角形的三边为8,8,17,不符合三角形的三边关系;当时,等腰三角形的三边为14,14,5,所以,这个等腰三角形的底边长是5,故答案为5cm【点睛】本题考查三角形三边关系,等腰三角形的性质.14、【分析】根据轴对称判断出点A关于x轴对称后的位置,此时横坐标不变,纵坐标互为相反数,然后再向左平移1个单位长度便可得到第一次变换后的点A的坐标;按照同样的方式可以找到第二次变换后的点A的坐标;然后再通过比较横纵坐标的数值,可以发现点A在每一次变换后的规律,即可求出经过2019次变换后的点A的坐标.【详解】点A原来的位置(0,1)第一次变换:,此时A坐标为;第二次变换:,此时A坐标为第三次变换:,此时A坐标为……第n次变换:点A坐标为所以第2019次变换后的点A的坐标为.故答案为:;;【点睛】本题考查的知识点是轴对称及平移的相关知识,平面直角坐标系中四个象限的点的横、纵坐标的符号是解题中的易错点,必须特别注意.15、(27,0)【分析】利用勾股定理和坐标轴上点的坐标特征分别求出P1、P2、P3的坐标,然后利用坐标变换规律写出P4,P5,P6的坐标.【详解】解:由题意知OA=1,OB=,则AB=AP1==2,∴点P1(0,3),∵BP1=BP2==2,∴点P2(3,0),∵P1P3=P1P2==6,∴点P3(0,9),同理可得P4(9,0),P5(0,27),∴点P6的坐标是(27,0).故答案为(27,0).【点睛】本题考查了作图-复杂作图和规律探索,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了从特殊到一般的方法解决规律型问题的方法.16、42【详解】解:连接AO,可知AO平分∠BAC,由角平分线的性质可知点O到AB、AC、BC的距离相等,把求△ABC的面积转化为求△AOB、△AOC、△BOC的面积之和,即考点:角平分线的性质.17、【分析】观察图象可知,O2、O4、O6、...O2020在直线y=-x上,OO2=的周长=(1++2),OO4=2(1++2),OO6=3(1++2),依次类推OO2020=1010(1++2),再根据点O2020的纵坐标是OO2020的一半,由此即可解决问题.【详解】解:观察图象可知,O2、O4、O6、...O2020在直线y=-x上,∵∠BAO=30°,AB⊥y轴,点B的坐标是(0,1),∴OO2=的周长=(1++2),∴OO4=2(1++2),OO6=3(1++2),依次类推OO2020=1010(1++2),∵直线y=-x与x轴负半轴的交角为30°∴点O2020的纵坐标=OO2020=故答案为:【点睛】本题考查坐标与图形的变化、规律型:点的坐标、一次函数的性质等知识,解题的关键是学会从特殊到一般的探究方法,属于中考常考题型.18、或【分析】如图所示符合题目条件的有F,F′两种情况,当在点F位置时,可证的△BFD≌△BED,根据,即可得出∠BED=∠DFB=130°,当在点F′时,FD=DF′,根据第一种情况即可求解.【详解】解:如图所示当在点F位置时∵平分,由图形的对称性可知△BFD≌△BED∴∠BED=∠DFB∵,∴∴∠BED=∠DFB=130°当在点F′时由①知,FD=DF′,∠DFA=∠FF′D=50°综上所述:的度数为或故答案为:或.【点睛】本题主要考查的是等腰三角形的判定及其性质定理的应用问题,灵活运用有关定理来分析、判定、推理和解答是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析.【分析】(1)由勾股定理可知当直角边为1和3时,则斜边为,由此可得线段PQ;(2)由勾股定理可知当直角边为2和3时,则斜边为,把斜边作为正方形的边长即可得到面积为13的正方形ABCD.【详解】(1)(2)如图所示:【点睛】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.20、-1【分析】根据题意,由多边形的性质,分析可得答案.【详解】依题意有n=4+3=7,m=6+2=8,t=63÷7=9,则(n﹣m)t=(7﹣8)9=﹣1.【点睛】本题考查了多边形的性质,从n边形的一个顶点出发,能引出(n﹣3)条对角线,一共有条对角线,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.这些规律需要学生牢记.21、(1)A(-1,5),B(-5,2),C(-3,1);(2)△ABC是直角三角形,理由见解析.【分析】(1)根据网格中三角形所处位置即可得出坐标;(2)利用勾股定理逆定理进行判定即可.【详解】(1)根据题意,得A(-1,5),B(-5,2),C(-3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.【点睛】此题主要考查平面直角坐标系中网格三角形坐标的求解以及勾股定理逆定理的运用,熟练掌握,即可解题.22、(1)该商店第一次购进水果1千克;(2)每千克水果的标价至少是15元.【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:(10÷第一次购进水果的重量+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【详解】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(+2)×2x=2400整理,可得:2000+4x=2400,解得x=1.经检验,x=1是原方程的解.答:该商店第一次购进水果1千克.(2)设每千克水果的标价是x元,则(1+1×2﹣20)×x+20×0.5x≥10+2400+950整理,可得:290x≥4350,解得x≥15,∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点睛】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.23、(1)证明见解析;(2)60°;(3)证明见解析【分析】(1)根据等边三角形的性质可得:∠B=∠ACB=60°,BC=CA,然后利用“边角边”证明:△ACE和△CBF全等;
(2)根据全等三角形对应角相等可得:∠EAC=∠BCF,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理得到∠CHE=∠BAC;
(3)如图2,先说明△CHG是等边三角形,再证明△DCH≌△ACG,可得DH=AG=AH+HG=AH+CH.【详解】解:(1)证明:∵△ABC为等边三角形,
∴∠B=∠ACB=60°,BC=CA,
即∠B=∠ACE=60°,
在△ACE和△CBF中,
∴△ACE≌△CBF(SAS);(2)解:由(1)知:△ACE≌△CBF,
∴∠EAC=∠BCF,
∴∠CHE=∠EAC+∠ACF=∠BCF+∠ACF=∠ACB=60°;
(3)如图2,由(2)知:∠CHE=60°,
∵HG=CH,
∴△CHG是等边三角形,
∴CG=CH=HG,∠G=60°,
∵△ACD是等边三角形,
∴AC=CD,∠ACD=60°,
∵△ACE≌△CBF,
∴∠AEC=∠BFC,
∵∠BFC=∠BAC+∠ACF=60°+∠ACF,
∠AEC=∠G+∠BCG=60°+∠BCG,
∴∠ACF=∠BCG,
∴∠ACF+∠ACD=∠BCG+∠ACB,
即∠DCH=∠ACG,
∴△DCH≌△ACG,
∴DH=AG=AH+HG=AH+CH.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记等边三角形的性质,并以此创造三角形全等的条件是解题的关键.24、(1)40元,55元;(2)708元【分析】(1)设租用男装一天x元,租用女装需要y元,根据4套男装和6套女装租用一天
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于二零二四年计划的环保技术研发合同2篇
- 二零二四年度物流服务合同的物流服务范围和质量标准3篇
- 2024年度热泵节能改造合同3篇
- 2024年度广告投放合同:商场广告位租赁及发布合同2篇
- 2024年度人脸识别技术校园门禁系统安全评估合同
- 2024年度教育培训服务合同标的万名员工培训
- 2024年度体育赛事组织合同竞赛规程3篇
- 2024年度旅行社服务合同(出境游)2篇
- 石灰粉购销合同
- 消火栓购销合同
- 物流管理职业生涯规划
- 师范类专业职业规划
- 《拼多多运营方案》课件
- 《道路客运输驾驶员两客一危安全警示教育培训》心理健康课件
- 21《女娲造人》公开课一等奖创新教学设计
- 冬歇期安全施工方案
- 2024届广东省珠海市珠海二中、斗门一中高考压轴卷化学试卷含解析
- 数据结构马世霞习题答案2020版
- 铝单板培训课件
- 2024控烟教育知识讲座
- 前台接待礼仪培训的旅游行业应用
评论
0/150
提交评论