


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年江苏省南通市通州区重点中学中考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.2.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A. B. C. D.3.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤4.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A.1 B.3 C.0 D.1或35.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、BC,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为()A.π B.π C.π D.π6.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为()A.(5,5) B.(5,4) C.(6,4) D.(6,5)7.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4 C.6 D.48.已知,下列说法中,不正确的是()A. B.与方向相同C. D.9.一组数据:6,3,4,5,7的平均数和中位数分别是()A.5,5 B.5,6 C.6,5 D.6,610.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90° B.135° C.270° D.315°二、填空题(共7小题,每小题3分,满分21分)11.如图,已知正八边形ABCDEFGH内部△ABE的面积为6cm1,则正八边形ABCDEFGH面积为_____cm1.12.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正确的是_____.13.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.14.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.15.等腰中,是BC边上的高,且,则等腰底角的度数为__________.16.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.17.计算=________.三、解答题(共7小题,满分69分)18.(10分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空_______,_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数.①如下分数段整理样本等级等级分数段各组总分人数48435741712②根据上表绘制扇形统计图19.(5分)已知关于x的方程.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.20.(8分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=,求DG的长,21.(10分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是;搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.22.(10分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.23.(12分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.24.(14分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.
2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【答案解析】
左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确.故此题选C.2、B【答案解析】
根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【题目详解】解:∵一次函数y=ax+b图像过一、二、四,∴a<0,b>0,又∵反比例函数y=图像经过二、四象限,∴c<0,∴二次函数对称轴:>0,∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【答案点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.3、D【答案解析】
①首先利用已知条件根据边角边可以证明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;
③利用全等三角形的性质和对顶角相等即可判定③说法正确;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;
⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【题目详解】由边角边定理易知△APD≌△AEB,故①正确;
由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
所以∠BEP=90°,
过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
在△AEP中,由勾股定理得PE=,
在△BEP中,PB=,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=,
故②是错误的;
因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
由△APD≌△AEB,
∴PD=BE=,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;
连接BD,则S△BPD=PD×BE=,
所以S△ABD=S△APD+S△APB+S△BPD=2+,
所以S正方形ABCD=2S△ABD=4+.
综上可知,正确的有①③⑤.故选D.【答案点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.4、B【答案解析】
直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.【题目详解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但当m=1时方程的二次项系数为0,∴m=3.故答案选B.【答案点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.5、A【答案解析】
利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧的长.【题目详解】解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的长=.故选:A.【答案点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.6、B【答案解析】
由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【题目详解】解:∵四边形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y轴,AD∥BC∥x轴
∴点D坐标为(5,4)
故选B.【答案点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.7、B【答案解析】
由已知条件可得,可得出,可求出AC的长.【题目详解】解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD是中线,BC=8,得DC=4,代入可得AC=,故选B.【答案点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.8、A【答案解析】
根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【题目详解】A、,故该选项说法错误B、因为,所以与的方向相同,故该选项说法正确,C、因为,所以,故该选项说法正确,D、因为,所以;故该选项说法正确,故选:A.【答案点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.9、A【答案解析】测试卷分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.平均数为:×(6+3+4+1+7)=1,按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.故选A.考点:中位数;算术平均数.10、C【答案解析】
根据四边形的内角和与直角三角形中两个锐角关系即可求解.【题目详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【答案点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.二、填空题(共7小题,每小题3分,满分21分)11、14【答案解析】
取AE中点I,连接IB,则正八边形ABCDEFGH是由8个与△IDE全等的三角形构成.【题目详解】解:取AE中点I,连接IB.则正八边形ABCDEFGH是由8个与△IAB全等的三角形构成.∵I是AE的中点,∴S△IAB=12S则圆内接正八边形ABCDEFGH的面积为:8×3=14cm1.
故答案为14.【答案点睛】本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形.12、①②④【答案解析】①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确,③由a=b,得,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为可能为0,所以本选项不正确,④由,得3a=2b,根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确,⑤因为互为相反数的平方也相等,由a2=b2,得a=b,或a=-b,所以本选项错误,故答案为:①②④.13、2【答案解析】∵,∴,故答案为2.14、1.5【答案解析】在Rt△ABC中,,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.15、,,【答案解析】
分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.【题目详解】①如图,若点A是顶角顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如图,若点A是底角顶点,且AD在△ABC外部时,∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图,若点A是底角顶点,且AD在△ABC内部时,∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;综上所述,△ABC底角的度数为45°或15°或75°;故答案为,,.【答案点睛】本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.16、﹣1【答案解析】
先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.【题目详解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴点G在以AB为直径的圆上,由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=−1,故答案为−1.【答案点睛】本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.17、1【答案解析】测试卷解析:3-2=1.三、解答题(共7小题,满分69分)18、(1)6;8;B;(2)120人;(3)113分.【答案解析】
(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;
(2)根据表格中的数据可以求得D等级的人数;
(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.【题目详解】(1)本次抽查的学生有:(人),
,
数学成绩的中位数所在的等级B,
故答案为:6,11,B;
(2)120(人),
答:D等级的约有120人;
(3)由表可得,
A等级学生的数学成绩的平均分数:(分),
即A等级学生的数学成绩的平均分是113分.【答案点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.19、(1),;(2)证明见解析.【答案解析】测试卷分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.测试卷解析:(1)设方程的另一根为x1,∵该方程的一个根为1,∴.解得.∴a的值为,该方程的另一根为.(2)∵,∴不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2.一元二次方程根根的判别式;3.配方法的应用.20、(1)证明见解析;(2)AD=;(3)DG=.【答案解析】
(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【题目详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴,即AD2=AB•AF=xy,则AD=;(3)连接EF,在Rt△BOD中,sinB=,设圆的半径为r,可得,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴,即DG=AD,∴AD=,则DG=.【答案点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.21、(1);(2)【答案解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.【题目详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是.【答案点睛】本题考核知识点:求规概率.解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.22、(1)13;(2)1【答案解析】
(1)利用概率公式直接计算即可;(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案【题目详解】(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,∴小明选择去郊游的概率=;(2)列表得:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司房屋安全管理办法
- 智慧场馆业务管理办法
- 自动化专业学生的就业前景与职业发展
- 退役磷酸铁锂正极衍生磷化铁活性材料在锂氧气电池中的应用探究
- 金融基础理论课程知识体系优化
- 碱溶处理对硅藻土保水渗透性能的作用机制探讨
- 餐饮业新店开业策划全攻略
- 功能文体学视角下的欧洲小说人物塑造深度解读
- 高校心理危机干预机制建设与实施研究
- 晋江市封控区管理办法
- 余料使用管理制度
- 农业面源防治课件
- 2025至2030中国氨基吡啶行业项目调研及市场前景预测评估报告
- 2025-2030中国商业展示道具市场应用前景及投资价值评估报告
- 2025年甘肃省武威市民勤县西渠镇人民政府选聘专业化管理村文书笔试参考题库及1套完整答案详解
- 防洪防汛安全知识试题及答案
- T/CCMA 0137-2022防撞缓冲车
- 江苏省2025年中职职教高考文化统考数学试题答案
- 浙江省公路工程监理用表-监理旁站记录2025
- 产科促宫缩药
- 2024年贵州省余庆县事业单位公开招聘医疗卫生岗笔试题带答案
评论
0/150
提交评论