版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行2.已知为等比数列,,,则()A.9 B.-9 C. D.3.在中,“”是“为钝角三角形”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件4.已知(),i为虚数单位,则()A. B.3 C.1 D.55.的展开式中,含项的系数为()A. B. C. D.6.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.7.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.8.已知,,则()A. B. C. D.9.已知,则,不可能满足的关系是()A. B. C. D.10.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为()A. B. C. D.12.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,曲线与直线相交,若存在相邻两个交点间的距离为,则可取到的最大值为__________.14.电影《厉害了,我的国》于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”《厉害了,我的国》正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看《厉害了,我的国》,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:甲说:第1个盒子里放的是,第3个盒子里放的是乙说:第2个盒子里放的是,第3个盒子里放的是丙说:第4个盒子里放的是,第2个盒子里放的是丁说:第4个盒子里放的是,第3个盒子里放的是小明说:“四位朋友你们都只说对了一半”可以预测,第4个盒子里放的电影票为_________15.记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_____.16.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a的取值范围是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)平面直角坐标系中,曲线:.直线经过点,且倾斜角为,以为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线的极坐标方程与直线的参数方程;(2)若直线与曲线相交于,两点,且,求实数的值.18.(12分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M19.(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.20.(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.21.(12分)已知函数,其中.(Ⅰ)若,求函数的单调区间;(Ⅱ)设.若在上恒成立,求实数的最大值.22.(10分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】
根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【题目详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【答案点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.2.C【答案解析】
根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【题目详解】∵,∴,又,可解得或设等比数列的公比为,则当时,,∴;当时,,∴.故选:C.【答案点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.3.C【答案解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.4.C【答案解析】
利用复数代数形式的乘法运算化简得答案.【题目详解】由,得,解得.故选:C.【答案点睛】本题考查复数代数形式的乘法运算,是基础题.5.B【答案解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【题目详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【答案点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.6.A【答案解析】
利用等比数列的性质可得,即可得出.【题目详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【答案点睛】本题考查了等比中项的求法,属于基础题.7.D【答案解析】
根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【题目详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【答案点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.8.D【答案解析】
分别解出集合然后求并集.【题目详解】解:,故选:D【答案点睛】考查集合的并集运算,基础题.9.C【答案解析】
根据即可得出,,根据,,即可判断出结果.【题目详解】∵;∴,;∴,,故正确;,故C错误;∵,故D正确故C.【答案点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题10.A【答案解析】
作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【题目详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【答案点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.11.C【答案解析】
将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【题目详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐近线对称,则圆心在渐近线上,所以.所以.故选:C【答案点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质,还考查了运算求解的能力,属于中档题.12.A【答案解析】
由题意可得,即,代入双曲线的渐近线方程可得答案.【题目详解】依题意椭圆与双曲线即的焦点相同,可得:,即,∴,可得,双曲线的渐近线方程为:,故选:A.【答案点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.4【答案解析】
由于曲线与直线相交,存在相邻两个交点间的距离为,所以函数的周期,可得到的取值范围,再由解出的两类不同的值,然后列方程求出,再结合的取值范围可得的最大值.【题目详解】,可得,由,则或,即或,由题意得,所以,则或,所以可取到的最大值为4.故答案为:4【答案点睛】此题考查正弦函数的图像和性质的应用及三角方程的求解,熟练应用三角函数的图像和性质是解题的关键,考查了推理能力和计算能力,属于中档题.14.A或D【答案解析】
分别假设每一个人一半是对的,然后分别进行验证即可.【题目详解】解:假设甲说:第1个盒子里面放的是是对的,则乙说:第3个盒子里面放的是是对的,丙说:第2个盒子里面放的是是对的,丁说:第4个盒子里面放的是是对的,由此可知第4个盒子里面放的是;假设甲说:第3个盒子里面放的是是对的,则丙说:第4个盒子里面放的是是对的,乙说:第2个盒子里面放的是是对的,丁说:第3个盒子里面放的是是对的,由此可知第4个盒子里面放的是.故第4个盒子里面放的电影票为或.故答案为:或【答案点睛】本题考查简单的合情推理,考查推理论证能力、分析判断能力、归纳总结能力,属于中档题.15.【答案解析】
观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【题目详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,∴A,A1,解得B,所以A﹣B.故答案为:.【答案点睛】本题考查了归纳推理,意在考查学生的推理能力.16.【答案解析】试题分析:由题意得函数在[2,上单调递增,当时在[2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是考点:函数单调性三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)(t为参数);(Ⅱ)或或.【答案解析】
试题分析:本题主要考查极坐标方程、参数方程与直角方程的相互转化、直线与抛物线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用,化简表达式,得到曲线的极坐标方程,由已知点和倾斜角得到直线的参数方程;第二问,直线方程与曲线方程联立,消参,解出的值.试题解析:(1)即,.(2),符合题意考点:本题主要考查:1.极坐标方程,参数方程与直角方程的相互转化;2.直线与抛物线的位置关系.18.(1)p=4;(2)OA⋅【答案解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)⋅x试题解析:(1)由y=2x-2x2=2py设M1(x1,因为直线y=p2平分∠M所以y1-p所以4-(2+p2)⋅x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,②式两边同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA⋅考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p219.(1)函数的单调递增区间为和,单调递减区间为;(2).【答案解析】
(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【题目详解】(1),①当时,,∴函数在内单调递增;②当时,令,解得或,当或时,,则单调递增,当时,,则单调递减,∴函数的单调递增区间为和,单调递减区间为(2)(Ⅰ)当时,所以在上无零点;(Ⅱ)当时,,①若,即,则是的一个零点;②若,即,则不是的零点(Ⅲ)当时,,所以此时只需考虑函数在上零点的情况,因为,所以①当时,在上单调递增。又,所以(ⅰ)当时,在上无零点;(ⅱ)当时,,又,所以此时在上恰有一个零点;②当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,,所以此时在上恰有一个零点,综上,【答案点睛】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想20.(1)(2)【答案解析】
(1)利用二倍角公式及三角形内角和定理,将化简为,求出的值,结合,求出A的值;(2)写出三角形的面积公式,由其最大值为求出.由余弦定理,结合,,求出的范围,注意.进而求出周长的范围.【题目详解】解:(1)整理得解得或(舍去)又;(2)由题意知,又,,又周长的取值范围是【答案点睛】本题考查了二倍角余弦公式,三角形面积公式,余弦定理的应用,求三角形的周长的范围问题.属于中档题.21.(Ⅰ)单调递减区间为,单调递增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 书法大型活动课件
- 社会保险基金与基金管理
- 《儿童脑性瘫痪》课件
- 《光敏电阻、光电池》课件
- 湖南省2024年化学中考试题【附答案】
- 《公司的股利政策》课件
- 《公司利润分配》课件2
- 冠脉造影术前护理
- 数学学案:课堂导学用数学归纳法证明不等式
- 大学生涯及生涯规划
- 2023年上海机场集团有限公司校园招聘笔试题库及答案解析
- 勘察质量及安全保障措施
- 高保真音频功率放大器
- 架桥机安全教育培训试卷
- 临时工用工协议书简单版(7篇)
- 国家电网公司施工项目部标准化管理手册(2021年版)线路工程分册
- 马克·夏加尔课件
- 沧州市基层诊所基本公共卫生服务医疗机构卫生院社区卫生服务中心村卫生室地址信息
- 小学生汉语拼音田字格练习纸蓝打印版
- 生态脆弱区的综合治理(第1课时)课件 高中地理人教版(2019)选择性必修2
- 8S培训教材(-90张)课件
评论
0/150
提交评论