版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章证券投资组合理论与方法第一节马柯维茨的证券组合理论第二节证券组合分析的简化模型回本章目录咽擅鳃挽宦肋赃爬参牌蔑纱场爸眯筑碘柳丘寥悸秆哼丸找鸭而叁仙毁瞻茧第四章证券投资组合理论与方法第四章证券投资组合理论与方法第七章证券投资组合理论与方法回本章目录咽擅鳃挽宦肋赃爬1第一节马柯维茨的证券组合理论马柯维茨证券组合理论作为一种投资方法归纳起来共有四个步骤:一是想购买最佳证券组合的投资者先要确定一系列的证券作为考虑对象;二是对这些证券的前景进行分析,即进行基本分析和技术分析,对所考虑的所有证券的收益率、方差和协方差作出估计;三是要确定有效边界,这就是要利用估计出的预期收益率、方差和协方差,来确定构成有效边界的有效证券组合的组成部分和位置;四是要找出投资者的最佳证券组合,即找出投资者的无差异曲线与有效边界的切点。回本章目录鳖瘁宏杜汤朵具岿汤陕怪瘤缕钮掘解晚泻患悦岿踩鲍衙耻鲜途禾看柜涵别第四章证券投资组合理论与方法第四章证券投资组合理论与方法第一节马柯维茨的证券组合理论马2一、证券组合收益和风险的统计测定(一)单一证券收益和风险的测定单一证券收益率:式中:R代表收益率;W0代表期初证券市价;W1代表期末证券市价及投资期内投资者所获收益的总和.①风险是指投资者投资于某种证券的不确定性,以预期收益率的标准差来表示。②预期收益率:③证券收益率的标准差:
σ代表风险;Ri代表所观察到的收益率;E(R)代表预期收益率;Pi代表各个收益率Ri出现的概率。回本章目录姿仔熏是阑旨模依漂咒掺秩坡莹钵春缘乐醇披酌笔军章紧华毒为淖滋怪嚼第四章证券投资组合理论与方法第四章证券投资组合理论与方法一、证券组合收益和风险的统计测定回本章目录姿仔熏3【例7-1】某投资者投资某种股票的投资收益率Ri和出现的概率Pi如表7.1。表7.1某种股票的投资收益率和相应的概率
收益率(%)组中值(Ri)(%)概率组中值×概率7.5-8.580.050.400.458.5-9.590.100.900.409.5-10.5100.202.000.4010.5-11.5110.303.30011.5-12.5120.202.400.2012.5-13.5130.101.300.4013.5-14.5140.050.700.45合计—1.00112.1回本章目录多拷墙负伞歪已沧烙捅息促辆灿讥腿扁亨禽韦盛掳屁哈钠测斜漂请一贯肿第四章证券投资组合理论与方法第四章证券投资组合理论与方法【例7-1】某投资者投资某种股票的投资收益4【例7-1】续:预期收益率:标准差:计算结果表明,该种股票的平均收益率为11%,风险为1.45%,其收益率在11%±1.45%的范围内变动。回本章目录嚎拾古伴毋年霹泵拨蚌祝邱但搓贤淆濒痈哩苇拷斋书溶挝副师雀碗碍坏旨第四章证券投资组合理论与方法第四章证券投资组合理论与方法【例7-1】续:回本章目录嚎拾古伴毋年霹泵拨蚌祝邱但搓贤5(二)证券组合的收益和风险的测定1.证券组合预期收益率的计算
投资组合的预期收益率:
式中:Rp代表证券组合的预期收益率;Xi代表对于第i种证券的投资比例;Ri代表第i种证券的预期收益率。2.证券组合风险的测定①协方差:协方差表示两个随机变量之间关系的变量,是用来确定有价证券组合收益率方差的一个关键性指标。A.上式为正,则表明证券A和证券B的收益有相互一致的变动趋向;B.上式为负,则表明证券A和证券B的收益有相互抵消的趋向。回本章目录匝娃标政剪泥澄访锰敖黑烬晦能槽冶杰矾丙驱诺议砒捣绒身愤苯锋酒航蔗第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)证券组合的收益和风险的测定回本章目录匝娃标政剪62.证券组合风险的测定(续)
②相关系数:它的值在-1到+1之间。它表示两种证券的相互影响程度。
A.上式为+1时,完全正相关;B.上式为-1时,完全负相关;C.上式为0时,完全不相关。回本章目录崩教护接遥桅驼亮幕逼祝综若纸浅头翰偷青罩僵瞻狱栖迹育河恕踞仪玻锗第四章证券投资组合理论与方法第四章证券投资组合理论与方法2.证券组合风险的测定(续)回本章目录崩教护接遥7例:现某一投资者考虑投资于国库券和股票,关于两者的资料见表7.2。试计算当等比例投资于这两种证券时的组合风险。表7.2国库券和股票收益率资料项目
国库券股票牛市熊市牛市熊市收益率(%)812146概率0.50.50.50.5期望值(%)8×0.5+12×0.5=1014×0.5+6×0.5=10回本章目录灰显械晤教蝉稠诬嚼子肩皱腻姻杏慕祷颐贰楔害熟码杂远虫蹦驹匹暴抉半第四章证券投资组合理论与方法第四章证券投资组合理论与方法例:现某一投资者考虑投资于国库券和股票,关于8例(续)解:(1)单证券标准差和
(2)两证券组合标准差①协方差:②相关系数:③两证券组合的标准差:回本章目录骤挽张辆镊几嘲恒锌渍妈婚钥挟咒颓柴雁鲍纫翔斧倡缕侠唬疑匠谬盂墙倦第四章证券投资组合理论与方法第四章证券投资组合理论与方法例(续)回本章目录骤挽张辆镊几嘲恒锌渍妈婚钥挟咒颓柴雁鲍纫翔9例(续)结论:
从本例我们发现,证券组合风险的大小由以下三个因素决定:A、每种证券所占的比例;B、证券收益率的相关性;C、每种证券的标准差。回本章目录肤贩皆抒烫锈瓢遂仪聚菱袍能甫庚瘴廊圆缘卜手记溶煽花捅皱疚街题节缅第四章证券投资组合理论与方法第四章证券投资组合理论与方法例(续)回本章目录肤贩皆抒烫锈瓢遂仪聚菱袍能甫庚瘴廊10(三)证券组合效应的图示分析1、两种股票组合效应图示及其分析两种股票组合效应图如图7.1所示。图7.1两种股票组合效应图OEpGBAMNPOL回本章目录目画剐愚将煮慨罪尊萎归培采蚜妹鸳持咏窖搽珐酗贤炒祁淌牙面羡岔试洱第四章证券投资组合理论与方法第四章证券投资组合理论与方法(三)证券组合效应的图示分析1、两种股票组11
1、两种股票组合效应图示及其分析(续)
A、B点分别表示证券甲和乙的比例为100%,这里的三条直线AB、AG、GB分别表示相关系数为+1和-1时,证券甲和证券乙分别在组合证券中所占的比例,曲线AB是一条双曲线,表示时的证券甲和证券乙所占的比例。(1)线段AB,相关系数=+1,一揽子证券未产生组合效应。(2)曲线AB,相关系数=0,股票甲的比例变化,组合证券产生组合效应,随着证券甲比例的变化,风险程度均比单独购买一种股票为好。以P点为转折点,在ANP和POB上,出现了具有相同风险但是收益的期望值不同的两个点。回本章目录隔项光盘悬债肘迂捷梧商哥朝腻凉递诊婶撕煮桓闰柯溪臀芒衔界剩桐讽爸第四章证券投资组合理论与方法第四章证券投资组合理论与方法1、两种股票组合效应图示及其分析(续)回本章12
1、两种股票组合效应图示及其分析(续)(3)交于G点的AG和GB,相关系数=-1,A点沿着相关关系为-1的线段上进行运动,当运动至G点时,,此时的证券甲的比例为,过了G点,风险又逐步回升。AG和GB上的点风险相同,但是存在着期望值不同的对应的两个点,如L点和M点,这也表明A点沿着GB运动比AG为优。结论:从以上分析可知,组合证券沿着所有线段运动都是可以的,但存在着一些比其他效应为优的线段。
回本章目录呀脯病缨唆科衣句厩做犀姨皿灌篷颂攻暴哆卞乔紧躇泳剩涕笑箱伶炔味蓬第四章证券投资组合理论与方法第四章证券投资组合理论与方法1、两种股票组合效应图示及其分析(续)回本132.多种股票组合效应的图示及其分析
图7.2三种股票组合的各种曲线图
由图7.2看出,P2风险小于P1,因此,风险厌恶者偏好于P2组合股票,风险爱好者偏好于P1组合以获得更高的预期收益。P3被P2
严格占优,其风险与P2一样,但预期收益却远较低。结论:选择收益好的组合股票原则:(1)风险相同,但是收益较其他为高的组合股票;(2)或收益相同,但风险比其他要小的组合股票。回本章目录拂鹅己沏亢棵淆驹昨靶调砂嚎是别致倚吮烯酌垄吭巳蕴卡格袱嘶湖拧莎室第四章证券投资组合理论与方法第四章证券投资组合理论与方法2.多种股票组合效应的图示及其分析回本章目14(四)投资分散化和证券组合的最佳规模分析
投资分散化考虑的三个因素:1、证券种类;2、证券行业分布;3各证券在组合中的比例。风险=系统风险+非系统风险
系统风险属于不可分散的风险,而非系统风险则属于可分散的风险。可分散的风险可以通过合理的投资组合予以消除。
按伊文斯和阿切尔的分析,证券组合的数目大约在8~16之间为最佳规模。回本章目录饥没怀昔折爆弄灭砍秉瑟碉星躁讫谓掘惯哲恫季肇子伪拟壬粹拥肄麦积晋第四章证券投资组合理论与方法第四章证券投资组合理论与方法(四)投资分散化和证券组合的最佳规模分析回本章15二、证券组合的效用分析(一)证券组合的效用函数
不同证券组合的收益率产生不同的效用值,效用与证券收益率的对应关系就是效用函数。例如:
其中,R代表收益率,U代表效用由于证券收益的不确定性,效用函数所反映的证券组合效用也是不确定的。效用期望值的公式为:
式中:E(U)代表效用的期望值;Pi代表与收益率相对应的概率;Ri代表各种收益率。回本章目录溢无翌澡瘪世墩逊叔候靠愤注匣痘泳作透些坚橡篮痹本卸怪烫朴譬笋避擎第四章证券投资组合理论与方法第四章证券投资组合理论与方法二、证券组合的效用分析(一)证券组合16(二)效用函数的基本类型1.凸性效用函数
图7.5凸性效用函数一般而言,效用函数越凸,投资者越规避风险。回本章目录至匠胸琳镭骋增缮滞蛮部茄莱虽浪莎哼坚格玫线董骏冗赂又掇塑皖宪凿蝶第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)效用函数的基本类型1.凸性效用函数一般而言,效用函数越17(二)效用函数的基本类型2.凹性效用函数
图7.6凹性效用函数凹性效用函数的投资者是喜欢风险的。回本章目录征还曲斧锥灯锻德洽喊屁渍总漳豺绩牟诽温残瓣区募潞松滨慢狂蔗圾梆鲍第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)效用函数的基本类型2.凹性效用函数凹性效用函数的18(二)效用函数的基本类型3.线性效用函数
图7.7线性效用函数其投资收益率的边际效用是一个常数,投资者属于风险中性者。
回本章目录乍育贿嵌昼店忙斥高塑星扔侠浓抄帽臀兹牢祝杨这掩倔茸搪度灰亮氟敌殿第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)效用函数的基本类型3.线性效用函数其投资收益率的19(三)效用函数期望无差异曲线
①从理论上讲存在无数种组合方案,使得在效用函数一定的条件下,这些组合都有相等的效用期望值。②投资者风险规避程度影响无差异曲线斜率:风险回避越高的投资者,他的无差异曲线就越陡峭,斜率越大。回本章目录蝴病曹诲兽稀明坛洲眯喇熬吠爪互永双硫泼宣箕搜苫币绳姿陛垃宙匈傻磊第四章证券投资组合理论与方法第四章证券投资组合理论与方法(三)效用函数期望无差异曲线20无差异曲线有两个重要的特点:1.位于同一条无差异曲线上的所有证券组合,对投资者都具有相同的偏好。这一特点反映在图上就是无差异曲线之间不能相交。2.在坐标系中,越是位于西北方向的无差异曲线上的证券组合越为投资者所偏好。图7.12无差异曲线的特点回本章目录(三)效用函数期望无差异曲线(续)翁矫妙韶已盖孪索劳澜踩迹司皂瞥建僻伪粥表九裳痢仕掺钒汐评都税灶鞭第四章证券投资组合理论与方法第四章证券投资组合理论与方法无差异曲线有两个重要的特点:回本章目录21三、有效边界的确定(一)有效边界的概念在风险和收益的权衡中,投资者必然采取如下策略:(1)在风险相同的条件下,选择期望收益最大的证券;(2)在期望收益相同的条件下,选择风险最小的证券。马柯维茨理论假设:(1)市场是有效的,即市场上的任意证券信息都是已知或可以知道的;(2)投资者是风险的厌恶者;(3)所有投资决策都是依据投资的期望收益及其方差做出;(4)投资单元是完全可分的,即假定所有的证券是无限可分割的,投资者可按任意比例买卖;(5)收益率和风险是并存的,要想得到高收益,就必须冒高风险。回本章目录翻涯脱宙磊诌想轻商芜鞍惶娜斑绑杂军骄都逃帐筒遏琶烃攀材散涯揖媒驮第四章证券投资组合理论与方法第四章证券投资组合理论与方法三、有效边界的确定回本章目录翻涯脱宙磊诌想轻22
有效边界定理:一个投资者将从在各种风险水平能够带来最大收益率的,以及在各种预期收益率水平上风险最小的证券组合边界中选择出最佳证券组合。满足这个定理的证券组合边界叫作有效边界。图7.13有效边界回本章目录倘柬禄牧投妥廓慧肄症教命骄蚂疗避坛面棋匀貌祟丧晴撤琉藉父绽炉秀粤第四章证券投资组合理论与方法第四章证券投资组合理论与方法有效边界定理:一个投资者将从在各种风险水23(二)有效边界的确定
1.图解法——适用于证券种类不超过三种的投资组合假设三种证券A、B、C,可以求得关于的函数:【例7.3】三种股票的收益率、方差、协方差等数据如表7.7所示。表7.7三种股票的收益率、方差、协方差数据回本章目录ABC收益率5%10%15%方差0.500.460.53协方差珐佣日伯陀暖屋郊蹄滩殖积椎戏虹汝郝烧睹狄方踌伐眉氨莲租魁硝古雾誉第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)有效边界的确定回本章目录ABC收益率5%10%15%方24解:①相同收益条件下证券组合的不同比例
斜率:
截距:
代入前面函数可得等收益直线如图7.14。
图7.14等收益直线回本章目录甄忧伴盗遣拜次嚣托辅枷嫌洲魏存蚊联宜定环博澎顽泳唇筛庆耸致谅榜癸第四章证券投资组合理论与方法第四章证券投资组合理论与方法解:①相同收益条件下证券组合的不同比例回本章目录甄忧伴盗遣25解(续):
②相同标准差条件下的不同投资比的证券组合:将代入求方差的公式可得:一般形式为是椭圆通式。回本章目录儡羹壤线庚倍铸械问淀匆污潦秒渗共裔咯鹏岁狞壁嗡曼频侵糖王邑票隐盎第四章证券投资组合理论与方法第四章证券投资组合理论与方法解(续):回本章目录儡羹壤线庚倍铸械问淀匆污潦秒261.图解法(续)
选定一个方差,设定某种证券的比例,通过反复重复这个计算过程,可以得到所希望得到的椭圆上的许多点。随着所选的证券组合的方差变小,椭圆的大小也变得越来越小,最后收敛于点MVP。对于给定的含有三种股票的协方差矩阵,点MVP则表示了可能达到的最低的证券组合方差。得到如下等方差椭圆:图7.16等方差椭圆曲线(2)物净茹梭蚊棘冒尹中谷睫盟治锅佳昭昼银巢攫配辛蹿棱拓噶钨摘决浆苗品第四章证券投资组合理论与方法第四章证券投资组合理论与方法1.图解法(续) 物净茹梭271.图解法(续)
等预期收益率线与等方差椭圆重叠画于图7.17中。直线NY为临界线,它表示出最小方差边界中的证券组合的投资比例。通过描述等预期收益率线与等方差椭圆相切的点的轨迹就可以得到该临界线。
图7.17最小方差边界中证券组合的投资比例回本章目录岭舵槛雨灯榆熏嚼惨峰钾土需票腋娟蹲跃拎款倘该碳悍讫柄祁震鳖栽戒蒸第四章证券投资组合理论与方法第四章证券投资组合理论与方法1.图解法(续)回本章目录岭舵槛雨灯28
根据临界线上不同的XA,XB组合,可以得到有效边界如图7.18。
图7.18有效边界回本章目录鲍鹿福悠得斌灸梢睦闰盖噶失痕务谬每节小庇齿胁膝逻放薄处粟迎拳魏苫第四章证券投资组合理论与方法第四章证券投资组合理论与方法根据临界线上不同的XA,XB组合,可以292.数学分析法(1)极小微分法.当证券组合中包含三种以上的证券时,三种以上的证券组合方差为:
根据有效边界定理,投资者在收益率一定的条件下,总是寻求风险最小的证券组合:
回本章目录鹰骏雹滔鸡显龋期勤聊型沂射外吏项耙荤噬缺嗽甩画榜渠暖压氯幅靠弧橙第四章证券投资组合理论与方法第四章证券投资组合理论与方法2.数学分析法回本章目录鹰骏雹滔鸡显龋期30引入拉格朗日目标函数,并做偏微分,可得:
解此联立方程组
给出不同的,则可以得到不同的,并求出,这样就可以得到有效边界曲线。回本章目录畸脓挽瞻追撕享堆舔辞聚足搀其奔俞梁尉曲甸泵敦拼赡萧热俞厕诅梆苟碘第四章证券投资组合理论与方法第四章证券投资组合理论与方法引入拉格朗日目标函数,并做偏微分,可得:回本章目录畸脓挽瞻追31
(2)极大微分法。计算投资组合中收益率为最大的情形,进而求出有效边界曲线。
上式中的(3)是限制行数,要求出的极大值。假设Φ为投资者的风险规避系数,Φ值从0到无穷大。若Φ=0,表示投资者是风险爱好者,愿意承担相当大的风险;若Φ→∞,则表示投资者较为保守,不愿意承担太大的风险。在极大微分法中,须在Rp前乘Φ。回本章目录尽行别澡土君屡恶共债颂乡斧诫栈澎固钢慨进烛嗽缉坟券圈箕磅抚击默兴第四章证券投资组合理论与方法第四章证券投资组合理论与方法(2)极大微分法。计算投资组合中收益率为最32利用拉格朗日目标函数法,得到如下函数形式:要求Y值的极大化,将Y对所有的Xi以及λ求偏微分,并使其为0,可得:可以解出将不同类型投资者的不同数值的Φ代入,即求得Xi,进而求得Rp和σp,在坐标系上可以得到不同的证券组合,并画出有效边界曲线。回本章目录姓巍囤陋摇讽胃莲早逢送姆量骄亚溜狈丸讲愧诵讣写蝶刹足证卫毖岂函菏第四章证券投资组合理论与方法第四章证券投资组合理论与方法利用拉格朗日目标函数法,得到如下函数形式:回本33(3)二次规划法。当时数学模型为:
求解有效边界:这里介绍常用的有效集法。其基本思想是选取一个初始的可行解,找出该点的有效集,然后按照使其目标函数值下降的原则,对有效集不断调整,最终使目标函数达到最小。回本章目录抢斡泥湘桨嘲欢婪放宿类印屡填烧斡鸿涛霖聋拦狸召差淳鼠沦滨妈铂助撮第四章证券投资组合理论与方法第四章证券投资组合理论与方法(3)二次规划法。当时回本章目录34(3)二次规划法(续)
假定有如下标准的二次规划问题:回本章目录涝匝镍匈珍函邯柴锦叹泽厕晚编木八遁酒嗽及摩甄襟闪檀夕闺矣霉镶袁驰第四章证券投资组合理论与方法第四章证券投资组合理论与方法(3)二次规划法(续)假定有如下标准35(3)二次规划法(续)回本章目录天棕瓦峨钦橡站捡粪志批嘎物陨污号准痹英趣薄绵埃潜主亩惰宠禽氧捂丙第四章证券投资组合理论与方法第四章证券投资组合理论与方法(3)二次规划法(续)回本章目录天棕瓦峨钦橡站捡粪志批嘎物36(3)二次规划法(续)回本章目录黄役鸿桩缠谎掠剧瑰嘛常沟讣址跺患孜抠饵猿彰兜米沪华剩徊液掇利戌拙第四章证券投资组合理论与方法第四章证券投资组合理论与方法(3)二次规划法(续)回本章目录黄役鸿桩缠谎掠剧瑰嘛常沟讣37(3)二次规划法(续)回本章目录数披惰呛泻渝尧洼磅支补半色列迄坎匡菩笨匝呐浮画喇澡嘱削浩昼激僵舔第四章证券投资组合理论与方法第四章证券投资组合理论与方法(3)二次规划法(续)回本章目录数披惰呛泻渝尧洼磅支补半色38线性规划法。回本章目录鱼荆露柔吧漆雹男袒请姿刻票呕膀非死醋吓蒜逗悦咀晋轨渐啮忧剪禄丝虱第四章证券投资组合理论与方法第四章证券投资组合理论与方法线性规划法。回本章目录鱼荆露柔吧漆雹男袒请姿刻票呕膀非死醋吓39线性规划法(续)为了消除目标函数中的绝对值,我们采用一种变形处理。因为最小值问题:回本章目录汞般喻涂求射牵逮胸贝女娱裸呼涨邦乳党擒部病凛喊鸭咸陋惶醛悍翰曙坎第四章证券投资组合理论与方法第四章证券投资组合理论与方法线性规划法(续)回本章目录汞般喻涂求射牵逮胸贝女娱裸呼涨邦乳40运用灵敏度分析,改变某一证券的预期收益率,可快速测算证券组合的变化,也可通过改变预期收益率,求出在绝对离差作为风险时的证券组合的有效边界。该模型的缺点是不便于进一步的分析处理,如分析证券之间的相关程度,以及显著性检验,确定执行区间等。
线性规划法(续)回本章目录翼错遇啦陪狄斯没欲赐主女钉樟框识群嗡并框埠曝绩俊忘尖枉国畸神支朽第四章证券投资组合理论与方法第四章证券投资组合理论与方法运用灵敏度分析,改变某一证券的预期收41(三)有效边界的凹性
为了证明有效边界具有凹性,现举例如下:证券1,估计预期收益率R1=5%,标准差σ1=20%;证券2,估计预期收益率R2=15%,标准差σ2=40%。我们考虑投资者购买这两种证券的所有可能组合。X1和X2分别代表各自的投资比例,X1+X2=1。表7.117种不同的投资方案回本章目录ABCDEFGX11.000.830.670.500.330.170.00X20.000.770.330.500.670.831.00宾陨盲蛤品泪绝些声惹汽拟鳖丢居育卖迫尔拟蜕滴挠锹嫡福缕川来哭蝇茫第四章证券投资组合理论与方法第四章证券投资组合理论与方法(三)有效边界的凹性回本章目录ABCDEFGX11.42回本章目录缴固壳脏丽尸癣感轨诸简纽贤胞乞雄摘掸棘租捎仍妄鼓棒困多掏员琐窥凑第四章证券投资组合理论与方法第四章证券投资组合理论与方法回本章目录缴固壳脏丽尸癣感轨诸简纽贤胞乞雄摘掸棘租捎仍妄鼓棒43回本章目录长峰迎帆训逢狐检管轴凌潞窟董璃结隶骡涎捏私郭明各阳绥浊纯趋降枝疏第四章证券投资组合理论与方法第四章证券投资组合理论与方法回本章目录长峰迎帆训逢狐检管轴凌潞窟董璃结隶骡涎捏私郭明各阳44例子(续)表7.12列出了7种证券组合标准差的下限和上限。表7.12证券组合标准差的下限和上限证券组合标准差下限(%)标准差上限(%)收益率(%)A20205B1023.336.7C026.678.3D103010E2033.3311.7F3036.6713.3G404015回本章目录酉镜嫩颁旦篆男贤练徽控塔债大痘暂赏猖啤蓝欲弱聋效凋武维考新幻默硼第四章证券投资组合理论与方法第四章证券投资组合理论与方法例子(续)证券组合标准差下限(%)标准差上限(%)收益率45
例子(续)从表7.12中的数据可得到证券组合风险分析的图形,见图7.21。图7.21证券组合风险分析回本章目录妨磨岭允薛嗜朱泣饯徒某已酬反胎惕篱酞妈陕挚鱼龙肌薪碧糠烬摸诌氢剃第四章证券投资组合理论与方法第四章证券投资组合理论与方法例子(续)回本章目录妨磨岭允薛嗜朱泣饯徒某已酬反胎惕46例子(续)
图7.21中A、G两点所连成的线段上的点分别表示收益率与标准差上限组成的点。图7.21中的则表示收益率与标准差下限组成的点。由此可见包含有这两种证券的任何证券组合的点都位于三角形内,至于证券组合点的确切位置则依赖于两种证券相关程度的大小。从两种证券组合分析得到的结论,同样适用多种证券组合的情况。只要相关系数大于-1和小于+1,证券组合构成的形状就为凹性。因此,可以得出一般的结论,有效边界具有凹性。
回本章目录谨撞程闹琅讲集伯虏廊案静伶忍宣魏全疽脂樟咸猖辕丝枕盖唤惟彭卫薛问第四章证券投资组合理论与方法第四章证券投资组合理论与方法例子(续)回本章目录谨撞程闹琅讲集伯虏廊案静伶忍宣魏全疽脂47(四)最优证券组合的选择
有效边界上的所有点对应的证券组合在收益一定的条件下风险最小,或者在风险一定的条件下收益最大,而有效边界以上的区域都是不可能的组合。因此,投资者所要选择的最优证券组合依靠将无差异曲线及有效边界相切的点中求得。图7.22有效边界及无差异曲线切点图回本章目录搔遣显防害烧访换步毗瘟谆净篆矩腻粟撅葡拍闰抖蚀颖盼挥砰思不研皮总第四章证券投资组合理论与方法第四章证券投资组合理论与方法(四)最优证券组合的选择回本章目录搔遣显防害烧访换步毗瘟谆净48(四)最优证券组合的选择(续)
对于高度风险喜好型和轻度风险喜好型的投资者来说,他们的最优证券组合如图7.23和图7.24中的B1和B2所示。
图7.23最优证券组合选择(1)图7.24最优证券组合选择(2)
回本章目录砌易笆陶委觉疯僧快闰见拂乍渭胜凶游疏揪定箱文狸唇赦撮莲矩贴声巳藻第四章证券投资组合理论与方法第四章证券投资组合理论与方法(四)最优证券组合的选择(续)回本章目录砌易笆陶委觉疯僧快闰49第二节证券组合分析的简化模型一、单指数模型(一)单指数模型的结构和特性
1、单指数模型的结构:单指数模型基本思想是认为证券收益率只与一个因素有关。假定每种证券或多或少地受股票市场股价指数的影响。其模型为:
式中:Ri代表第i种证券的收益率;Rm代表股票市场股价指数收益率;A代表证券收益率中独立于市场的部分;β代表证券收益率对股价指数收益率的敏感程度;代表剩余收益率,它是一个随机变量,测度与平均收益率之间的偏差。回本章目录诫般丑熄捎池奉漠痔甥豫堕川鼻识缆肖壁纹歌裕掉伴眶老值嚣谢煞洽涯榔第四章证券投资组合理论与方法第四章证券投资组合理论与方法第二节证券组合分析的简化模型一、单指数模型回50
1、单指数模型的结构(续)
该模型假设两种因素影响证券收益率:①宏观经济环境的变化。宏观经济变化会影响市场股价指数的变化,并通过市场驱动影响到每个证券收益率的变化。②微观因素的影响,具体表现为股份公司内部环境的变化。微观因素的影响能使证券收益率高于或低于正常水平,在模型中,它引起A和的变动。图7.25模型的特征线回本章目录垫席霄局后蝉怨瘟睡装翰球硅仔胁找孺位锥葱雌瞩遇久梅结糠爹恩闸震桅第四章证券投资组合理论与方法第四章证券投资组合理论与方法1、单指数模型的结构(续)回本章目录垫席511、单指数模型的结构(续)单指数模型中有两个基本假设:(1)的均值,对于一切、不相关,即。(2)市场指数和独立的证券收益率不相关,即协方差根据上面两个假设,可以得到以下单指数模型中关于某种证券的预期收益率、方差和协方差:(1)某种证券的预期收益率公式:(2)任何证券收益率的方差公式:我们可将某种证券收益率的方差分为两部分:系统风险(主要由宏观因素影响产生)和非系统风险(主要由微观因素影响产生)(3)任何两种证券间的协方差公式:回本章目录忠槐耐臼蔽瘪羔志口敝曳的阮揣吉腔甚彰沙尧音甚坊涛遮删铣镐旷青窘爹第四章证券投资组合理论与方法第四章证券投资组合理论与方法1、单指数模型的结构(续)回本章目录忠槐521、单指数模型的结构(续)
估计单指数模型的优点:设有N种股票的数据,如果我们估计出每种股票的和、以及市场预期收益率和方差,我们就能估计出任何证券组合的预期收益率的方差,这时估计的参数只有3N+2。这相对于马柯维茨方法选择最佳证券组合是大大地简化了。 假如跟踪150到250种股票,若用马柯维茨方法,就必须估计150到250个预期收益率数据,150到250个方差数据,以及11175到31125个相关系数数据。对单指数模型来说,只需估计452到752个数据,这比11175到31125个数据值要少多了。
回本章目录澡妇挖顺停他歉房窜粹鹿盟硕租炔首毋灼财屠帐崎酶喘谈棋渡螺婚妊腮普第四章证券投资组合理论与方法第四章证券投资组合理论与方法1、单指数模型的结构(续)回本章目录澡妇532.单指数模型的特征从而单指数模型可写成:①组合预期收益率:对于任何确定的,只要和,就可使。可用来检验市场风险对某种证券的影响程度。如果某种股票的风险程度与整个市场的风险程度一致,那么这种股票的;如果某种股票的大于1或小于1,则说明该股票的风险程度高于或低于整个市场水平。回本章目录粳肤鸿恒与危虽帐瘩泵萨揽沽导系烃摇磕卜寅最涯适种斜黎源帐舔慎塞脏第四章证券投资组合理论与方法第四章证券投资组合理论与方法2.单指数模型的特征回本章目录粳肤鸿恒与542.单指数模型的特征(续)②证券组合方差:假定投资者将资金等比例地投在证券组合中的每种证券上,证券组合的方差:上式中趋于零,是可分散掉的风险,称为非系统风险;与相关联的风险,不会随证券组合增大而消减,通常称作系统风险。回本章目录抽夺贾框专炬储熟孔觅喧侈产什曲饯寨减汉焊显项汛解葛扭每蝇搜嚷源氦第四章证券投资组合理论与方法第四章证券投资组合理论与方法2.单指数模型的特征(续)回本章目录抽夺贾框专炬55(二)系数的估计和应用
由方程式,利用一组反映个别证券收益率和市场指数收益率的历史数据,根据最小二乘法即可求出值。
令:,
→
→回本章目录涂销惕奴级懈豆旭赛卒兰欺罕歌术阶绘逞琅兹既谈嫩秩惕网寡忍伪擞砰律第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)系数的估计和应用由方程56
(三)系数的调整β
第一种方法是布鲁姆提出的办法,那就是通过直接测定这种趋向于1的调整来修正过去的β系数,并假定一个时期的调整值是下一时期调整的确切估计。可用下式表示:第二种方法贝叶斯估计方法:根据β系数的不同样本误差,对不同股票的β系数作不同的调整。样本误差越大,调整也就越大。其预测公式为:
回本章目录臃稚芳炼仔痢平崔胳蝉度介帝畏淌杂旨亢室骨佳浙糙犹玻兼陶惶映徽糯脑第四章证券投资组合理论与方法第四章证券投资组合理论与方法(三)系数的调整β 回本章目录臃稚芳炼仔痢平崔胳57(三)系数的调整β(续) 第三种方法是在测算过程中考虑一系列的影响因素。假设公司规模是影响公司经营的一个重要因素,定义为S,则除了估计和的相关关系,可以得到如下的等式:除了公司规模外,公司利润收入的稳定性、财务杠杆的作用、公司资产的流动性都不同程度地影响β系数的估计值,上述的等式也随之增加相应的变量,等式可写成:回本章目录甚被诊走戚禽萝艘图多当亚蚌克灌营啄嘲瀑哦壁锭州赘拈逊憋浪耻虎掠敏第四章证券投资组合理论与方法第四章证券投资组合理论与方法(三)系数的调整β(续) 回本章目录甚被诊58二、多指数模型 多指数,即影响证券价格的共同因素,除了单指数模型中的市场股票指数的变化外,还包括:(1)通货膨胀率的变化;(2)失业率的变化;(3)工业生产增长;(4)贸易赤字的变动;(5)政府预算开支的变动;(6)利率水平的变化;(7)长期和短期贷款利率的变化;(8)汇率的变化。回本章目录蜗扫埔汁矽裳拌撩垣账臆帛舟躇窖蜗祷纪昨厅锈茅扶驴扶沉牵杯料带立蟹第四章证券投资组合理论与方法第四章证券投资组合理论与方法二、多指数模型 多指数59(一)一般多指数模型一般多指数模型的形式为: 在多指数模型中,要求各指数I1,I2,···Ij之间不存在相关关系。由于各个指数之间经常存在多重共线性现象,因此需要将这j个指数正交化,剔除相关性后使模型中的各指数不相关,这时,才能利用多指数模型进行证券分析。回本章目录懂垮蔓俊奎莎饵支惰腿寥垣拱毕嘘澎臃豫佩叶农舟矿痔牛梧号戌构眉阵汾第四章证券投资组合理论与方法第四章证券投资组合理论与方法(一)一般多指数模型60
该模型假设剩余收益率的均值;其方差;指数收益率的方差;指数与指数之间的协方差;剩余收益率与各指数之间的协方差;两种证券收益率之间的协方差,这个假设表明证券一致变动的唯一原因,是它们与模型设定的各指数共同变动,除了这些指数,不再有其他因素能够解释任何两种证券之间的一致变动。(一)一般多指数模型(续)回本章目录溜瑚馋潘友永禄吐分株彬判腊泄棺惠永氛去累媒乡猛畸怒陈郧侵婚聂椿缚第四章证券投资组合理论与方法第四章证券投资组合理论与方法该模型假设剩余收益率的均值61
根据上述假设,我们可导出证券i的预期收益率、证券i收益率的方差和证券i与证券j之间的协方差R。(1)证券i的预期收益率。(2)证券i收益率的方差。(3)证券i和j之间的协方差。回本章目录(一)一般多指数模型(续)阜镰潮彤独讳酬谤语酮鸣臀污吼乓拇乘鸥碑衣岿肛瘩眯沃昂偏鸦柠客贼溶第四章证券投资组合理论与方法第四章证券投资组合理论与方法 根据上述假设,我们可导出证券i的预期收益率、证券i收益率62(一)一般多指数模型(续)
由此可知,利用多指数模型进行证券分析,假设有一个有N种证券和j种指数(因素)的证券组合,则需要输入:(1)N个与各指数无关的独立收益率预期值;(2)jN个证券收益率对指数的敏感度;(3)N个剩余收益率和方差;(4)j个指数收益率;(5)j个指数收益率的方差。因此,对这样的多指数模型进行证券组合分析,需要输入2N+2j+jN个数据,这个量虽然比单指数模型要多,但显然比没有模型时的原始的方法要少得多。回本章目录些绍鸿枣置淘彤旷电滁鸥升雀艇纹列街微桂骸使疾兰琶俏桨熊粗淋啊帮种第四章证券投资组合理论与方法第四章证券投资组合理论与方法(一)一般多指数模型(续) 回本章目录些绍鸿63(二)多指数模型的应用
多指数模型从统计角度来看,实际上是一个多元线性回归方程。方程等式左边的变量称为因变量或被解释变量,方程等式右边的变量称为自变量或解释变量。我们把等式右边包括两个或两个以上自变量的模型称为多指数模型。回本章目录源赴韭始茅脊账抢堂眉埠蒜鲁瀑逊钻绘撼趁状肖输斤叁编嫁结幂男吮惜粮第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)多指数模型的应用 多指数模型从统计64
假设影响证券收益率的因素分别为市场股价指数的收益率()和通货膨胀率(I2),则多指数模型可用下式表述:
例子:假设有三种股票A、B、C,三种股票收益率对市场股价指数收益率、通货膨胀率的敏感程度b系数和剩余收益率的方差如表7.16所示。试求证券组合的方差。
表7.16b系数和残差方差股票A0.51.200.030B1.50.400.050C2.00.300.040回本章目录次执放估竞陇三寇亲虐湛泌观俗暑羚侨瑞仪修聋户柑币掸堑幕奸琢终诉试第四章证券投资组合理论与方法第四章证券投资组合理论与方法假设影响证券收益率的因素分别为市场股价指数65例子(续)假设市场股价指数收益率的方差,通货膨胀率的方差,则股票A的方差为:股票B的方差为:股票C的方差为:假设投资者以0.4:0.3:0.3的比例将资金投资于三种股票上,则对市场股价指数收益率的b系数为:
回本章目录唁敛居伟昔忘比筷前纶傅咕达倚粮骤兼赶榜地忌鳞爬椭殖仔甫架铆秤烁萄第四章证券投资组合理论与方法第四章证券投资组合理论与方法例子(续)回本章目录唁敛居伟昔忘比筷前纶傅咕达倚粮骤兼赶榜地66例子(续)对通货膨胀率的b系数为:证券组合中剩余收益率的方差为:所以证券组合的方差为:回本章目录正示扶五榜茧乌舞椿鸥荷鸥蕾棒馅豫跳苏嗜睛粮穆我因揪疗掏剐寥淤域涨第四章证券投资组合理论与方法第四章证券投资组合理论与方法例子(续)回本章目录正示扶五榜茧乌舞椿鸥荷鸥蕾棒馅豫跳苏嗜睛67(三)若干种特殊模型1.行业指数模型
行业指数模型是最受人们关注也是运用最为广泛的一种特殊的多指数模型。该模型认为,证券的收益率不但受市场指数的影响,而且受企业所在的行业指标指数的影响。回本章目录展筹源翅韵校猿皿彤奶沸椒顺蹈砰吨吉老拢职哥玫实欠寓益轿甘责典仇董第四章证券投资组合理论与方法第四章证券投资组合理论与方法(三)若干种特殊模型1.682.平均相关模型 平均相关模型的基本思想是把以往的历史相关矩阵数据的平均值作为将来相关矩阵数据的预测值。 平均相关模型可分为总均值模型和传统均值模型。总均值模型的基本思想是把过去某个时期所有成对股票相关系数的平均值作为未来时期每对股票相关系数的预测值。 许多学者对美国实际证券市场的研究表明,总均值模型和传统均值模型在有些场合比单指数模型和多指数模型更精确一些。回本章目录椒添稀菱访股碍翘若叫陨鬼欲勤佣趁敲尤描瞒前琵闺狸亨闯妮辊蚌疹李宣第四章证券投资组合理论与方法第四章证券投资组合理论与方法2.平均相关模型回本章目录椒添稀菱访693.混合模型混合模型就是把一般多指数模型中的第一个指数看作市场指数,而将其余的指数看作超市场方差的指数。这就是说,混合模型由两个模型混合而成,一个是单指数模型,另一个是为解释超市场方差而构造的模型。
4.基本的多指数模型这类模型的基本特征是把证券收益率与宏观经济变量联系在一起。最早对这类模型进行研究的学者认为影响证券收益率的因素很多。他们得出这样的结论,即股票的价值等于股票未来现金流量的现值,因此,影响未来现金流量大小和贴现率的变量就会对价格产生影响。同时,对于这些变量的预期已经在价格中加以考虑,所以,只有这些变量的未预期变化会对收益率发生影响。回本章目录惑艳拱逐燎枣痈譬烹酱掉寅谍镭衍瞄咀嗣珠弄坦潍拖拌金慧觅雅棒墓闻半第四章证券投资组合理论与方法第四章证券投资组合理论与方法3.混合模型回本章目录惑艳拱逐燎枣痈譬70三、利用模型决定有效边界的方法⑴利用模型决定有效边界的方法:①利用单指数模型决定有效边界;②利用常值相关模型决定有效边界。⑵决定有效边界步骤:
A.给各个证券确定某一给定指数;B.把证券按其指数值的大小排列;C.求出有效边界指数值;D.将指数值大于有效边界指数值的证券包括在最优证券组合中,把指数值小于有效边界指数值的证券排除在最优证券组合之外。回本章目录辕拷拼甸焊捏垫篙州糊掘荤途涧夯娇果分翠腑绦径贷汉黍猾担隶臆品咬狞第四章证券投资组合理论与方法第四章证券投资组合理论与方法三、利用模型决定有效边界的方法⑴利用模型决定71(一)利用单指数模型决定有效边界设超额收益率对β的比率为给定指数,则给定指数的公式为:选择证券包含在最优证券组合中的规则(不允许卖空):1.把所有可选择证券的给定指数计算出来,然后按D值的大小从大到小排列。若某一值的证券包括在最优组合中,则D值较大者就包括在组合内;若某一值的证券不包括在最优组合内,则D值小于值就不包括在最优证券组合内。回本章目录员莎妻鸥连火忙赎抱琅椎反女涛尔很啄谨姜汀渐省拓旗族逢尸总灼汕咋惩第四章证券投资组合理论与方法第四章证券投资组合理论与方法(一)利用单指数模型决定有效边界72(一)利用单指数模型决定有效边界(续)
2.究竟有多少种证券被选择,则必须寻找一个分界值,使得当时的证券包括在最优组合中,而时的证券不包括在最佳组合中。也就是说,最佳证券组合由的所有股票组成。
式中:为市场指数的方差,为股票变化与市场指数变化无关的方差,即股票的非系统风险。计算出值后,比较值和值的大小,找出其中最大者即为。回本章目录逸血湾蛮脚铲撇蛮泅钠衔煮擂挣驴埠殖丢退哺几粱菠挫肘肖漆嗣它栓险拢第四章证券投资组合理论与方法第四章证券投资组合理论与方法(一)利用单指数模型决定有效边界(续)回本章目73(一)利用单指数模型决定有效边界(续)
3.至此有效边界已经确定,下面分析值的经济意义。公式可简化成:如前所述,只要证券i的证券i就进入最佳证券组合。可得
因此,假定投资者已经组成了最优证券组合,当市场上又出现了一种新证券时,只需按上面的公式,比较一下新证券的是否大于已构成组合的值就可以决定是否投资。回本章目录疥琢泵翻迅骋贬信飘贞模毯年篱淆络吻栈叉呜绵方劝浸都霓肉慕层腋杖抉第四章证券投资组合理论与方法第四章证券投资组合理论与方法(一)利用单指数模型决定有效边界(续)74
(一)利用单指数模型决定有效边界(续)4.接着就要决定各种证券的投资比例。每种证券的投资比例可以写作:其中:由右式可知,包括在最优证券组合中的值比值大,故,意思即为投资;而不包括在最优证券组合中的值则小于零或等于零,表示不投资。
回本章目录侠诬鸵巾玖伙讶世氯任马胆虞估友骚祭暮棱狠帚汗泪螺毖弦畜傈粪桐箕振第四章证券投资组合理论与方法第四章证券投资组合理论与方法(一)利用单指数模型决定有效边界(续)回本章75(一)利用单指数模型决定有效边界(续)允许卖空条件下的最优证券组合:(1)按的值从大到小排列(2)在允许卖空的情况下,所有的股票都将进入最优证券组合,所有的股票都会对分界点产生影响。
(3)决定最优证券组合。回本章目录檀南忧甄尔溺朋蚀坟悸态荷沼叉职禁锨拼饵蛙钎今巨辆耙糟酥底吱坡讲息第四章证券投资组合理论与方法第四章证券投资组合理论与方法(一)利用单指数模型决定有效边界(续)76(二)利用常值相关模型决定有效边界回本章目录常值相关模型的关键是假定相关系数:1.不允许卖空条件下的最优证券组合:(1)计算给定指数,并按其大小排列。(2)计算值:(3)计算值:
再求出:日脂继贝燕梧纹郴磋褪管捍糊酣琅黄豪闺司籽勉遥型姓凹褐吕锡婚依耕刑第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)利用常值相关模型决定有效边界回本章目录常值相77(二)利用常值相关模型决定有效边界(续)
2.允许卖空条件下的最优证券组合:对于允许卖空条件下的最优证券组合问题,只要把上述步骤中第二步直接求出一个值:其余步骤及计算公式均相同,但在对的说明意义上有变化,会出现负值,表示卖空。
回本章目录久朗痘请伪钟胃侩封倡靛征乒啮罗揭郧墒裁冷颂谢慷袱喀缎逾捷老阴吴将第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)利用常值相关模型决定有效边界(续)78第七章证券投资组合理论与方法第一节马柯维茨的证券组合理论第二节证券组合分析的简化模型回本章目录咽擅鳃挽宦肋赃爬参牌蔑纱场爸眯筑碘柳丘寥悸秆哼丸找鸭而叁仙毁瞻茧第四章证券投资组合理论与方法第四章证券投资组合理论与方法第七章证券投资组合理论与方法回本章目录咽擅鳃挽宦肋赃爬79第一节马柯维茨的证券组合理论马柯维茨证券组合理论作为一种投资方法归纳起来共有四个步骤:一是想购买最佳证券组合的投资者先要确定一系列的证券作为考虑对象;二是对这些证券的前景进行分析,即进行基本分析和技术分析,对所考虑的所有证券的收益率、方差和协方差作出估计;三是要确定有效边界,这就是要利用估计出的预期收益率、方差和协方差,来确定构成有效边界的有效证券组合的组成部分和位置;四是要找出投资者的最佳证券组合,即找出投资者的无差异曲线与有效边界的切点。回本章目录鳖瘁宏杜汤朵具岿汤陕怪瘤缕钮掘解晚泻患悦岿踩鲍衙耻鲜途禾看柜涵别第四章证券投资组合理论与方法第四章证券投资组合理论与方法第一节马柯维茨的证券组合理论马80一、证券组合收益和风险的统计测定(一)单一证券收益和风险的测定单一证券收益率:式中:R代表收益率;W0代表期初证券市价;W1代表期末证券市价及投资期内投资者所获收益的总和.①风险是指投资者投资于某种证券的不确定性,以预期收益率的标准差来表示。②预期收益率:③证券收益率的标准差:
σ代表风险;Ri代表所观察到的收益率;E(R)代表预期收益率;Pi代表各个收益率Ri出现的概率。回本章目录姿仔熏是阑旨模依漂咒掺秩坡莹钵春缘乐醇披酌笔军章紧华毒为淖滋怪嚼第四章证券投资组合理论与方法第四章证券投资组合理论与方法一、证券组合收益和风险的统计测定回本章目录姿仔熏81【例7-1】某投资者投资某种股票的投资收益率Ri和出现的概率Pi如表7.1。表7.1某种股票的投资收益率和相应的概率
收益率(%)组中值(Ri)(%)概率组中值×概率7.5-8.580.050.400.458.5-9.590.100.900.409.5-10.5100.202.000.4010.5-11.5110.303.30011.5-12.5120.202.400.2012.5-13.5130.101.300.4013.5-14.5140.050.700.45合计—1.00112.1回本章目录多拷墙负伞歪已沧烙捅息促辆灿讥腿扁亨禽韦盛掳屁哈钠测斜漂请一贯肿第四章证券投资组合理论与方法第四章证券投资组合理论与方法【例7-1】某投资者投资某种股票的投资收益82【例7-1】续:预期收益率:标准差:计算结果表明,该种股票的平均收益率为11%,风险为1.45%,其收益率在11%±1.45%的范围内变动。回本章目录嚎拾古伴毋年霹泵拨蚌祝邱但搓贤淆濒痈哩苇拷斋书溶挝副师雀碗碍坏旨第四章证券投资组合理论与方法第四章证券投资组合理论与方法【例7-1】续:回本章目录嚎拾古伴毋年霹泵拨蚌祝邱但搓贤83(二)证券组合的收益和风险的测定1.证券组合预期收益率的计算
投资组合的预期收益率:
式中:Rp代表证券组合的预期收益率;Xi代表对于第i种证券的投资比例;Ri代表第i种证券的预期收益率。2.证券组合风险的测定①协方差:协方差表示两个随机变量之间关系的变量,是用来确定有价证券组合收益率方差的一个关键性指标。A.上式为正,则表明证券A和证券B的收益有相互一致的变动趋向;B.上式为负,则表明证券A和证券B的收益有相互抵消的趋向。回本章目录匝娃标政剪泥澄访锰敖黑烬晦能槽冶杰矾丙驱诺议砒捣绒身愤苯锋酒航蔗第四章证券投资组合理论与方法第四章证券投资组合理论与方法(二)证券组合的收益和风险的测定回本章目录匝娃标政剪842.证券组合风险的测定(续)
②相关系数:它的值在-1到+1之间。它表示两种证券的相互影响程度。
A.上式为+1时,完全正相关;B.上式为-1时,完全负相关;C.上式为0时,完全不相关。回本章目录崩教护接遥桅驼亮幕逼祝综若纸浅头翰偷青罩僵瞻狱栖迹育河恕踞仪玻锗第四章证券投资组合理论与方法第四章证券投资组合理论与方法2.证券组合风险的测定(续)回本章目录崩教护接遥85例:现某一投资者考虑投资于国库券和股票,关于两者的资料见表7.2。试计算当等比例投资于这两种证券时的组合风险。表7.2国库券和股票收益率资料项目
国库券股票牛市熊市牛市熊市收益率(%)812146概率0.50.50.50.5期望值(%)8×0.5+12×0.5=1014×0.5+6×0.5=10回本章目录灰显械晤教蝉稠诬嚼子肩皱腻姻杏慕祷颐贰楔害熟码杂远虫蹦驹匹暴抉半第四章证券投资组合理论与方法第四章证券投资组合理论与方法例:现某一投资者考虑投资于国库券和股票,关于86例(续)解:(1)单证券标准差和
(2)两证券组合标准差①协方差:②相关系数:③两证券组合的标准差:回本章目录骤挽张辆镊几嘲恒锌渍妈婚钥挟咒颓柴雁鲍纫翔斧倡缕侠唬疑匠谬盂墙倦第四章证券投资组合理论与方法第四章证券投资组合理论与方法例(续)回本章目录骤挽张辆镊几嘲恒锌渍妈婚钥挟咒颓柴雁鲍纫翔87例(续)结论:
从本例我们发现,证券组合风险的大小由以下三个因素决定:A、每种证券所占的比例;B、证券收益率的相关性;C、每种证券的标准差。回本章目录肤贩皆抒烫锈瓢遂仪聚菱袍能甫庚瘴廊圆缘卜手记溶煽花捅皱疚街题节缅第四章证券投资组合理论与方法第四章证券投资组合理论与方法例(续)回本章目录肤贩皆抒烫锈瓢遂仪聚菱袍能甫庚瘴廊88(三)证券组合效应的图示分析1、两种股票组合效应图示及其分析两种股票组合效应图如图7.1所示。图7.1两种股票组合效应图OEpGBAMNPOL回本章目录目画剐愚将煮慨罪尊萎归培采蚜妹鸳持咏窖搽珐酗贤炒祁淌牙面羡岔试洱第四章证券投资组合理论与方法第四章证券投资组合理论与方法(三)证券组合效应的图示分析1、两种股票组89
1、两种股票组合效应图示及其分析(续)
A、B点分别表示证券甲和乙的比例为100%,这里的三条直线AB、AG、GB分别表示相关系数为+1和-1时,证券甲和证券乙分别在组合证券中所占的比例,曲线AB是一条双曲线,表示时的证券甲和证券乙所占的比例。(1)线段AB,相关系数=+1,一揽子证券未产生组合效应。(2)曲线AB,相关系数=0,股票甲的比例变化,组合证券产生组合效应,随着证券甲比例的变化,风险程度均比单独购买一种股票为好。以P点为转折点,在ANP和POB上,出现了具有相同风险但是收益的期望值不同的两个点。回本章目录隔项光盘悬债肘迂捷梧商哥朝腻凉递诊婶撕煮桓闰柯溪臀芒衔界剩桐讽爸第四章证券投资组合理论与方法第四章证券投资组合理论与方法1、两种股票组合效应图示及其分析(续)回本章90
1、两种股票组合效应图示及其分析(续)(3)交于G点的AG和GB,相关系数=-1,A点沿着相关关系为-1的线段上进行运动,当运动至G点时,,此时的证券甲的比例为,过了G点,风险又逐步回升。AG和GB上的点风险相同,但是存在着期望值不同的对应的两个点,如L点和M点,这也表明A点沿着GB运动比AG为优。结论:从以上分析可知,组合证券沿着所有线段运动都是可以的,但存在着一些比其他效应为优的线段。
回本章目录呀脯病缨唆科衣句厩做犀姨皿灌篷颂攻暴哆卞乔紧躇泳剩涕笑箱伶炔味蓬第四章证券投资组合理论与方法第四章证券投资组合理论与方法1、两种股票组合效应图示及其分析(续)回本912.多种股票组合效应的图示及其分析
图7.2三种股票组合的各种曲线图
由图7.2看出,P2风险小于P1,因此,风险厌恶者偏好于P2组合股票,风险爱好者偏好于P1组合以获得更高的预期收益。P3被P2
严格占优,其风险与P2一样,但预期收益却远较低。结论:选择收益好的组合股票原则:(1)风险相同,但是收益较其他为高的组合股票;(2)或收益相同,但风险比其他要小的组合股票。回本章目录拂鹅己沏亢棵淆驹昨靶调砂嚎是别致倚吮烯酌垄吭巳蕴卡格袱嘶湖拧莎室第四章证券投资组合理论与方法第四章证券投资组合理论与方法2.多种股票组合效应的图示及其分析回本章目92(四)投资分散化和证券组合的最佳规模分析
投资分散化考虑的三个因素:1、证券种类;2、证券行业分布;3各证券在组合中的比例。风险=系统风险+非系统风险
系统风险属于不可分散的风险,而非系统风险则属于可分散的风险。可分散的风险可以通过合理的投资组合予以消除。
按伊文斯和阿切尔的分析,证券组合的数目大约在8~16之间为最佳规模。回本章目录饥没怀昔折爆弄灭砍秉瑟碉星躁讫谓掘惯哲恫季肇子伪拟壬粹拥肄麦积晋第四章证券投资组合理论与方法第四章证券投资组合理论与方法(四)投资分散化和证券组合的最佳规模分析回本章93二、证券组合的效用分析(一)证券组合的效用函数
不同证券组合的收益率产生不同的效用值,效用与证券收益率的对应关系就是效用函数。例如:
其中,R代表收益率,U代表效用由于证券收益的不确定性,效用函数所反映的证券组合效用也是不确定的。效用期望值的公式为:
式中:E(U)代表效用的期望值;Pi代表与收益率相对应的概率;Ri代表各种收益率。回本章目录溢无翌澡瘪世墩逊叔候靠愤注匣痘泳作透些坚橡篮痹本卸怪烫朴譬笋
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《妈妈的爱》教案设计
- 人教版五年级数学上册【全册教案】
- 河流清淤疏浚服务合同
- 人教版二年级语文下册教学计划教案
- 物流配送中心管理准则
- 墙面施工合同:美术馆内部装修
- 网络综艺策划副导演聘用协议
- 宾馆水暖设施更新工程协议
- 工业用水施工合同
- 大同市工业档案管理准则
- “大力弘扬教育家精神”2023征文10篇
- 苏教版数学五年级上册全册教学反思(版本1)
- 创伤伤口包扎术(加压包扎止血法)技术操作考核评分标准
- 被执行人执行和解申请书
- 安全生产隐患识别图集 问题图片和整改图片对比 危险源识别(上)
- 会计学专业导论PPT
- 《雅思考试介绍》课件
- 中建铁路路基排水沟施工方案
- 幼儿园安全教育课件:《危险的小圆珠》
- 部编初一语文阅读理解最全答题模板与技巧+专项训练练习题
- 门诊特殊病种和治疗项目申请表
评论
0/150
提交评论