版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省宜宾市2019-2020学年八年级(下)期末数学预测试卷(解析版)参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)TOC\o"1-5"\h\z.下列各式中,分式的个数有( )1-1b2 _1J(K_y)2o_1 _53 a+1兀1ft-2 2 (k+v), 1 "A.2个B.3个C.4个D.5个【分析】判断分式的依据是看分母中是否含有字母, 如果分母中含有字母则是分式, 如果分母中不含有字母则不是分式.【解答】解:上一,-^77, \,2一工这4个式子分母中含有字母,因此是分a+1 坨-2 G+y)2 x式.其它式子分母中均不含有字母,是整式,而不是分式.故选:C.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.W2y.化简:的结果是(“工cK八yr¥A.口B.cC.dD.ox+2 x-2 x+2x—2【分析】首先将分子、分母进行因式分解,然后根据分式的基本性质约分.xyu2y y(x-2) v【解答】解:" =- h二—^,/-4x+4 (s-2)212故选D.【点评】本题考查因式分解及分式的约分,因式分解是约分的基础.3.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为 S亩=172,=25=256.下列说法:分数5060708090100人数甲组251013146乙组441621212①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数》乙组成绩的众数;④两组成绩的中位数均为80,但成绩全0的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有( )A.2种B.3种C.4种D.5种【分析】分别利用平均数公式以及方差的意义和众数的定义以及中位数的定义分别分析得出即可.【解答】解:①•••X甲=言(50X2+60X5+70M0+80M3+90M4+1004)=80,X^=--(50>4+60M+70M6+80X2+90M2+100M2)=80,50・♦•两组的平均数相同,(故①选项正确);2 9②S田=172,S乞=256,••・甲组学生成绩比乙组学生成绩稳定,(故 ②选项正确);③由甲组成绩的众数是90,乙组成绩的众数是70,因此甲组成绩的众数》乙组成绩的众数,(故③选项正确);④由中位数的定义可得:两组成绩的中位数均为80,从中位数来看,甲组与乙组成绩一样好,(故④选项错误);⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好,(故⑤选项正确).故选:C.【点评】此题主要考查了方差以及平均数的求法和众数以及中位数的定义等知识, 正确把握相关定义是解题关键.4.若式子VF-1+(k-1)0有意义,则一次函数y=(k-1)x+1-k的图象可能是( )【分析】首先根据二次根式中的被开方数是非负数,以及 a0=1(a为),判断出k的取值范围,然后判断出k-1、1-k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k-1)x+1-k的图象可能是哪个即可.【解答】解:二.式子/-1+(k-1)0有意义,fk-1)O[k-1H0解得k>1,•.k-1>0,1-k<0,•.k-1>0,1-k<0,故选:A.)x+1-k的图象可能是:【点评】(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数哥的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a为);②00力.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.5.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件: ①AB=BC,②/ABC=90°,③AC=BD,④AC,BD中选两个作为补充条件,使?ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④【分析】利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.【解答】解:A、二•四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②/ABC=90。时,菱形ABCD是正方形,故此选项正确,不合题意;B、•••四边形ABCD是平行四边形,・•・当②ZABC=90。时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形 ABCD是正方形,故此选项错误,符合题意;C、.••四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、二•四边形ABCD是平行四边形,・•・当②ZABC=90。时,平行四边形ABCD是矩形,当④AC^BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.【点评】此题主要考查了正方形的判定以及矩形、 菱形的判定方法,正确掌握正方形的判定方法是解题关键.6.如图,将矩形纸片ABCD折叠,使得点A和点C重合,折痕是EF,连结EC.若AB=2,BC=4,贝UCE的长为( )NB p CA.3B.3.5C.2.5D.2.8【分析】由四边形ABCD是矩形,得至ijCD=AB=2,AD=BC=4,/D=90°,根据折叠的性质得到AE=CE,根据勾股定理列方程即可得到结论.【解答】解:二•四边形ABCD是矩形,CD=AB=2,AD=BC=4,/D=90°,.・将矩形纸片ABCD折叠,使得点A和点C重合,.AE=CE,•.DE=AD-AE=4-CE,ce2=de2+cd2,即CE2=(4-CE)2+22,CE=2.5,故选C.【点评】该题主要考查了翻折变换的性质及其应用问题, 矩形的性质,灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答._,一、一-K-3m_ 7.解关于x的方程——-=——产生增根,则常数m的值等于( )X1X-1A.-1B.-2C.1D,2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为 0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解;方程两边都乘(X-1),得X-3=m,•.•方程有增根,・•・最简公分母X-1=0,即增根是x=1,把x=1代入整式方程,得m=-2.故选:B.【点评】增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.在平面直角坐标系中,任意两点A(X1,yi),B(X2,y2),规定运算:①A㊉B=(xi+x2,Yi+y2);②A?B=x1x2+yiy2;③当x1二x2且y1二y2时,A=B,有下列四个命题:(1)若A(1,2),B(2,-1),贝UA㊉B=(3,1),A?B=0;(2)若A㊉B=B®C,贝UA=C;(3)若A?B=B?C,则A=C;(4)对任意点A、B、C,均有(A㊉B)®C=A®(B®C)成立,其中正确命题的个数为()A.1个B.2个C.3个D.4个【分析】(1)根据新定义可计算出 A®B=(3,1),A?B=0;(2)设C(X3,Y3),根据新定义得A®B=(x]+x2,Yi+y2),B㊉C=(X2+X3,Y2+y3),则x1+x2=x2+x3,y〔+y2=y2+y3,于是得到xi=x3,y〔=y3,然后根据新定义即可得到 A=C;(3)由于A?B=xix2+yiy2,B?C=x2x3+y2y3,则xix2+yiy2=x2x3+y2y3,不能得到xi=x3,yi=y3,所以A范;(4)根据新定义可得(A®B)®C=A®(B®C)=(X1+X2+X3,y什y2+y3).【解答】解:(1)A®B=(1+2,2-1)=(3,1),A?B=1>2+2X(-1)=0,所以(1)正确;(2)设C(x3,ya),A®B=(x[+x2,Yi+y2),B㊉C=(X2+X3,Y2+y3),而A㊉B=B®C,所以x1+x2=x2+x3,Yi+y2=y2+y3,贝Ux〔二x3,Yi=y3,所以A=C,所以(2)正确;(3)A?B=xix2+yiy2,B?C=X2x3+y2y3,而A?B=B?C,则x〔x2+yiy2=x2X3+y2y3,不能得到X1=X3,yi=y3,所以A无,所以(3)不正确;(4)因为(A㊉B)®C=(xi+x2+x3,yi+y2+y3),A®(B®C)=(xi+x2+X3,yi+y2+y3),所以(A㊉B)®C=A®(B®C),所以(4)正确.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成 如果••那么…'形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理,也考查了阅读理解能力.二、填空题:本大题共8个小题,每小题3分,共24分.请把答案直接填在答题卡对应题中横线上.(注意:在试题卷上作答无效).某种禽流感病毒的直径为0.000000012米,将这个数用科学记数法表示为 1某M0-8米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为 aX10n,与较大数的科学记数法不同的是其所使用的是负指数哥, 指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000012=1.2M08米,故答案为:1.2X10-8.【点评】本题考查用科学记数法表示较小的数, 一般形式为a>10n,其中1耳a|v10,n为由原数左边起第一个不为零的数字前面的 0的个数所决定.. 」,…-4j士工.当x=-2时,分式 的值为0.x-2【分析】分式的值为0的条件是:(1)分子=0;(2)分母加.两个条件需同时具备,缺一不可.据此可以解答本题.J-4(氐-2)(x+2)[解答]解:<±_ :_vk+2=0,x-2x-2■-x=-2,故答案为:-2.【点评】此题考查的是对分式的值为 0的条件,分子等于0,分母不能等于0,题目比较简单.
_y=.写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:_y=-x+3..根据已知条件确定k,b应满足的关系式,再根据条件进行分析即可.【解答】解:设此一次函数关系式是: y=kx+b.把x=0,y=3代入得:b=3,又根据y随x的增大而减小,知:k<0.故此题只要给定k一个负数,代入解出b值即可.如y=-x+3.(答案不唯一)故答案是:y=-x+3.【点评】本题考查了一次函数的性质.掌握待定系数法,首先根据已知条件确定 k,b应满足的关系式,再根据条件进行分析即可..如图,在四边形ABCD中,/ADC=/ABC=90°,AD=CD,DPIAB于P.若四边形ABCD的面积是18,则DP的长是3、历.【分析】过点D作DELDP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出/ADP=/CDE,再利用甭角边”证明4ADP和4CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.【解答】解:如图,过点D作DELDP交BC的延长线于E,./ADC=/ABC=90。,•・四边形DPBE是矩形,••/CDE+/CDP=90°,/ADC=90°,./ADP+/CDP=90°,./ADP=ZCDE,••DPIAB,./APD=90°,./APD=ZE=90°,在4ADP和4CDE中,rZADP=ZCDE*Zapd=Ze,AD=CDADP^ACDE(AAS),・•.DE=DP,四边形ABCD的面积二四边形DPBE的面积=18,矩形DPBE是正方形,DP=71E=3V2故答案为:3次. 口EAAp 飞【点评】本题考查了正方形的判定与性质, 全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.k13.已知双曲线y=一经过点(-1,3),如果A(ai,bi),B(a2,b2)两点在该双曲线上,且ai<a2<0,那么bivb2(选填法"、="、之").【分析】根据反比例函数的增减性解答.【解答】解:把点(-1,3)代入双曲线y=—得k=-3<0,故反比例函数图象的两个分支在第二、四象限,且在每个象限内 y随x的增大而增大,A(a1,b1),B(a2,b2)两点在该双曲线上,且a1Va2<0,・•・A、B在同一象限,b1Vb2.故答案为:v.【点评】本题考查利用反比例函数的增减性质判断图象上点的坐标特征.14.如图,在四边形ABCD中AB//CD,若加上AD//BC,则四边形ABCD为平行四边形.现在请你添加一个适当的条件: BE=DF,使得四边形AECF为平行四边形.(图中不再添加点和线)【分析】添加条件是BE=DF,根据三角形全等的性质和一组对边平行且相等的四边形是平行四边形证明.【解答】解:添加的条件:BE=DF.证明:•••四边形ABCD为平行四边形・•.AB=CD,/ABE=/CDF又「BE=DFABE^ACDFAE=CF,/AEB=/CFD/AEF=/EFCAE//FC••・四边形AECF为平行四边形.故答案为:BE=DF.【点评】本题考查了平行四边形的判定, 在应用判定定理判定平行四边形时, 应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.TOC\o"1-5"\h\z1 315.(3分)(2015甘南州)如图,点A在双曲线尸一上,点B在双曲线y=一上,且AB//x\o"CurrentDocument"X X轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 2.
【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE,y轴,垂足为E,,一点A在双曲线■上,•・四边形AEOD的面积为1,・•点B在双曲线y=色上,且AB//x轴,•・四边形BEOC的面积为3,•・四边形ABCD为矩形,则它的面积为3-1=2.故答案为:2.ODCx【点评】本题主要考查了反比例函数 行k中k的几何意义,即过双曲线上任意一点引 x轴、xy轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.16.如图,已知在正方形ABCD中,点E、F分别在BC、CD上,4AEF是等边三角形,连接AC交EF于G,给出下列结论:①BE=DF;②/DAF=15"③AC垂直平分EF;④BE+DF=EF.其中结论正确的有 ①②③ .(只填番号)【分析】通过条件可以得出△ABE^^ADF,从而得出/BAE=/DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,由勾股定理表示出EF、CG,再通过比较可以得出结论.【解答】解:二•四边形ABCD是正方形,AB=BC=CD=AD,/B=/BCD=ZD=ZBAD=90.「△AEF等边三角形,•.AE=EF=AF,/EAF=60°.・./BAE+ZDAF=30°.在RtAABE和RtAADF中,fAE^AF,1AB=AD•••RtAABE^RtAADF(HL),BE=DF(故①正确)./BAE=/DAF,・./DAF+ZDAF=30°,即/DAF=15。(故②正确),BC=CD,BC-BE=CD-DF,即CE=CF,•••AE=AF,・••AC垂直平分EF.(故③正确)设EC=x,由勾股定理,得EF=V2x,CG=^^x,2- -V6AG=AEsin60=EFsin60=2>CGsin60=节x,AC=.二—二二-.••AB=」2,BE=2/^_x=Vl£2 2,BE+DF=Mx—x力&x.(故④错误).故答案为:①②③【点评】本题考查了正方形的性质的运用, 全等三角形的判定及性质的运用, 勾股定理的运用,等边三角形的性质的运用,解答本题时运用勾股定理的性质解题时关键.、解答题:本大题共8个题,共72分.解答应写出文字说明,证明过程或演算步骤.(15分)(2016春宜宾期末)(1)计算:(-1)2013+正彳7-|-2|+(2013-兀)-、一 2(2)解方程: 一+十二二3X-1 1-Kc,一一…9 m-2A1 一 (3)先化简,再求值: 上--三——+(1--7 )•请选一个你喜欢的数求解.加2一] I[/一2.1【分析】(1)先根据有理数乘方的法则、数的开方法则及绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先去分母,把分式方程化为整式方程,求出 x的值,代入最简公分母进行检验即可;(3)先算括号里面的,再算除法,最后算减法,选取合适的 x的值代入进行计算即可.【解答】解:(1)原式=-1+3—2+1—3+4二2;TOC\o"1-5"\h\z、…一一一一… …一?(2)方程两边同时乘以x-1得,2-(x+2)=3(xT),解得x=—,4,飞…_ 3 1把x=—代入x-1得,--1=—-%,4 4 4故x=三是原分式方程的根;4_, 7m-2 m向-2)(3)原式=上---_7T 7 歹irH-1(irH-1)(m-1)(jp-1)22 m-2 (m-I.)2=mH(io-1) 2)\o"CurrentDocument"2 2一irrflm(nH-l)2m-mHm(nrFl)1二一,m当m=2时,原式=~.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简, 代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.18.(6分)(2011济宁)如图,在平行四边形ABCD中,对角线AC、BD相交于O,过点O作直线EFXBD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【分析】由四边形ABCD是平行四边形,即可得AD//BC,OB=OD,易证得△OED0^OFB,可得DE=BF,即可证得四边形BEDF是平行四边形,又由EFXBD,即可证得平行四边形BEDF是菱形.【解答】证明:二.四边形ABCD是平行四边形,AD//BC,OB=OD,•••/EDO=/FBO,/OED=/OFB,OED^AOFB(AAS),DE=BF,又..ED//BF,••・四边形BEDF是平行四边形,•••EFXBD,?BEDF是菱形.【点评】此题考查了平行四边形的判定与性质, 菱形的判定以及全等三角形的判定与性质. 此题难度不大,解题的关键是注意数形结合思想的应用.19.(9分)(2013天津)四川雅安发生地震后,某校学生会向全校 1900名学生发起了心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(I)本次接受随机抽样调查的学生人数为 50、图①中m的值是32:(n)求本次调查获取的样本数据的平均数、众数和中位数;
10元的学生人数.颔(m)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.颔【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出(2)利用平均数、中位数、众数的定义分别求出即可;10元的学生人数.(3)根据样本中捐款1010元的学生人数.【解答】解:(1)根据条形图4+16+12+10+8=50(人),m=100-20-24-16-8=32;⑵・工=专(5M+10X16+15X12+20M0+30>8)=16,・•.这组数据的平均数为:16,•••在这组样本数据中,10出现次数最多为16次,,这组数据的众数为:10,•••将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 15,・•.这组数据的中位数为:2(15+15)=15;•••在50名学生中,捐款金额为 10元的学生人数比例为32%,,由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900>32%=608,・•.该校本次活动捐款金额为 10元的学生约有608名.故答案为:50,32.【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识. 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据, 注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
20.(6分)(2010襄阳)为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司筹集到资金130万元,用于一次性购进A,B两种型号的收割机30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价见下表:A型收割机B型收割机进价(万元/台)5.33.6售价(万元/台)64设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为 y万元.(1)试写出y与x的函数关系式;(2)市农机公司有哪几种购进收割机的方案可供选择?(3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的政府补贴总额 W为多少万元?【分析】(1)y=(A型收割机售价-A型收割机进价)x+(B型收割机售价-B型收割机进价)X(30-x);(2)购买收割机总台数为30台,用于购买收割机的总资金为 130万元,总的销售后利润不少于15万元.可得到两个一元一次不等式.(3)利用y与x的函数关系式y=0.3x+12来求最大利润.【解答】解:(1)y=(6—5.3)x+(4—3.6)(30—x)=0.3x+12(2)依题意,有喈.lx>1053k+(30-x)(2)依题意,有喈.lx>10Q3x+12>15.•.x为整数,,x=10,11,12,即农机公司有三种购进收割机的方案可供选择:方案1:购进A型收割机10台,购进B型收割机20台;方案2:购A型收割机11台,购B型收割机19台;方案3:购进A型收割机12台,购B型收割机18台.
(3) 0.3>0,,一次函数y随x的增大而增大.即当x=12时,y有最大值,y最大值=0.3M2+12=15.6(万元),此时,W=6M3%M2+4M3%M8=18.72(万元).答:选择第三种方案获利最大,最大利润为 15.6万元,获得的政府补贴为 18.72万元【点评】解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义..(8分)(2005四川)制作一种产品,需先将材料加热达到 60c后,再进行操作.设该材料温度为y(C),从加热开始计算的时间为 x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为 15C,加热5分钟后温度达到60C.(1)分别求出将材料加热和停止加热进行操作时,(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15c(2)根据工艺要求,当材料的温度低于15c时,y与时间x成一次函数关系;停止加热进须停止操作,那么从开始加热到停止操作,行操作时,温度y与时间x成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;(2)把y=15代入丫=逊中,进一步求解可得答案.【解答】解:(1)材料加热时,设y=ax+15(a㈤),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0»4)停止加热时,设y=一(k加),由题意得60=5解得k=300,则停止加热进行操作时y与X的函数关系式为y=』29(x当);(2)把y=15代入y=2",得x=20,因此从开始加热到停止操作,共经历了 20分钟.答:从开始加热到停止操作,共经历了 20分钟.【点评】本题考查了反比例函数的应用, 现实生活中存在大量成反比例函数的两个变量, 解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系.(8分)(2016春宜宾期末)如图,/CAE是4ABC的外角,AD平分/EAC,且AD//BC.过点C作CGXAD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.【分析】先根据题意推理出四边形 AFCG是矩形,然后根据矩形的性质得到对角线相等;由第一问的结论和ACLFG得到四边形AFCG是正方形,然后即可得到4ABC是等腰直角三角形.【解答】(1)证明::AD平分/EAC,且AD//BC,/ABC=/EAD=/CAD=/ACB,•.AB=AC;AF是BC边上的中线,•••AFXBC,•••CGXAD,AD//BC,•••CGXBC,AF//CG,••・四边形AFCG是平行四边形,/AFC=90°,,四边形AFCG是矩形;AC=FG.(2)解:当ACLFG时,4ABC是等腰直角三角形.理由如下:•••四边形AFCG是矩形,,四边形AFCG是正方形,/ACB=45°,AB=AC,..△ABC是等腰直角三角形.【点评】该题目考查了矩形的判定和性质、 正方形的判定和性质、等腰三角形的性质,知识点比较多,注意解答的思路要清晰.(10分)(2016春宜宾期末)如图,直线y=2x-6与反比例函数y=-(k>0)的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)当x―1vxv0或x>4时,2x-6>—(k>0);(3)在x轴上是否存在点C,使得4ABC为等腰三角形,且AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.【分析】(1)根据点的坐标利用反比例函数图象上点的坐标特征即可求出 k值,再令直线y=2x-6中y=0求出x的值,即可得出点B的坐标;(2)联立一次函数与反比例函数解析式成方程组, 求出另一交点坐标,补充完整函数图象,根据两函数图象的上下位置关系即可得出结论;(3)假设存在,设点C的坐标为(m,0),由两点间的距离公式分别表示出 AB、AC的长度,令AC=AB,即可得出关于m的无理方程,解方程即可得出结论.【解答】解:(1)二•反比例函数y=±(k>0)的图象过点A(4,2),k=4>2=8,・♦•反比例函数的解析式为y=区.令y=2x-6中y=0,则2x-6=0,解得:x=3,.・•点B的坐标为(3,0).(2)联立两函数的解析式成方程组,得:/T ,解得:广,或JK=4.行2.6斥Y1尸2补充完整函数图象,如图所示.观察两函数图象可发现: 当-1vxv。或x>4时,一次函数图象在反比例函数图象的上方,・•.不等式2x-6>K(k>0)的解集为-1vxv
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44744-2024粮食储藏低温储粮技术规程
- 2024面向智能制造专业领域的多模态内容资源分类与编码标准规范
- 包头2024年09版小学五年级下册英语第3单元寒假试卷
- 2023年过热蒸汽干燥设备资金申请报告
- 2023年环氧丙烷资金申请报告
- 2024年电源适配器项目资金需求报告代可行性研究报告
- 强化品德修养方面存在的问题-原因-措施
- 三维数字内容制作-三维动画材质师工作流程
- 【上海54】期中模拟卷01【24-25章】
- 质量月代表的发言稿(3篇)
- 2024-2025学年八年级上学期期中考试地理试题
- 2019年湖南岳阳中考满分作文《握手》3
- 危急值的考试题及答案
- 浙江省北斗星盟2023-2024学年高二下学期5月阶段性联考数学试题2
- 统编版(2024新版)七年级《道德与法治》上册第一单元《少年有梦》单元测试卷(含答案)
- 自然拼读法-图文.课件
- 电商主播考勤管理制度
- 2024-2030年中国矿泉水行业发展趋势及发展前景研究报告
- 商业银行贵金属业务消费者权益保护实施办法
- 2024届宜宾市九年级语文上学期期中考试卷附答案解析
- 2024继续教育《医学科研诚信与医学了研究伦理》答案
评论
0/150
提交评论