2022-2023学年西南交通大学附属中学高一上数学期末质量跟踪监视试题含解析_第1页
2022-2023学年西南交通大学附属中学高一上数学期末质量跟踪监视试题含解析_第2页
2022-2023学年西南交通大学附属中学高一上数学期末质量跟踪监视试题含解析_第3页
2022-2023学年西南交通大学附属中学高一上数学期末质量跟踪监视试题含解析_第4页
2022-2023学年西南交通大学附属中学高一上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

15/162022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.函数fx=lgA.0 B.1C.2 D.32.下列函数中,以为最小正周期且在区间上为增函数的函数是()A. B.C. D.3.函数在区间(0,1)内的零点个数是A.0 B.1C.2 D.34.已知圆与圆相离,则的取值范围()A. B.C. D.5.设,,,则a,b,c的大小关系是()A. B.C. D.6.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.7.若函数在区间上单调递增,则实数k的取值范围是()A. B.C. D.8.三个数大小的顺序是A. B.C. D.9.如图,已知水平放置的按斜二测画法得到的直观图为,若,,则的面积为()A.12 B.C.6 D.310.将函数的图像先向右平移个单位,再把所得函数图像横坐标变为原来的,纵坐标不变,得到函数的图像,若函数在上没有零点,则的取值范围是()A. B.C. D.11.已知函数f(x)是偶函数,且f(x)在上是增函数,若,则不等式的解集为()A.{x|x>2} B.C.{或x>2} D.{或x>2}12.如图所示的是用斜二测画法画出的的直观图(图中虚线分别与轴,轴平行),则原图形的面积是()A.8 B.16C.32 D.64二、填空题(本大题共4小题,共20分)13.函数的定义域是______________.14.已知幂函数在区间上单调递减,则___________.15.符号表示不超过的最大整数,如,定义函数,则下列命题中正确是________.①函数最大值为;②函数的最小值为;③函数有无数个零点;④函数是增函数;16.设,若存在使得关于x的方程恰有六个解,则b的取值范围是______三、解答题(本大题共6小题,共70分)17.已知集合,B=[3,6].(1)若a=0,求;(2)xB是xA的充分条件,求实数a的取值范围.18.已知角的终边经过点,求下列各式的值:(1);(2)19.已知,求的值.20.如图,在四棱锥中,底面,,点在线段上,且.(Ⅰ)求证:平面;(Ⅱ)若,,,,求四棱锥的体积.21.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.22.已知函数,且的解集为.(1)求函数的解析式;(2)设,若对于任意的、都有,求的最小值.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】在同一个坐标系下作出两个函数的图象即得解.【详解】解:在同一个坐标系下作出两个函数的图象如图所示,则交点个数为为2.故选:C2、B【解析】对四个选项依次判断最小正周期及单调区间,即可判断.【详解】对于A,,最小正周期为,单调递增区间为,即,在内不单调,所以A错误;对于B,的最小正周期为,单调递增区间为,即,在内单调递增,所以B正确;对于C,的最小正周期为,所以C错误;对于D,的最小正周期为,所以D错误.综上可知,正确的为B故选:B【点睛】本题考查了函数的最小正周期及单调区间的判断,根据函数性质判断即可,属于基础题.3、B【解析】,在范围内,函数为单调递增函数.又,,,故在区间存在零点,又函数为单调函数,故零点只有一个考点:导函数,函数零点4、D【解析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法5、C【解析】利用指数函数和对数函数的性质确定a,b,c的范围,由此比较它们的大小.【详解】∵函数在上为减函数,,∴,即,∵函数在上为减函数,,∴,即,函数在上为减函数,,即∴.故选:C.6、A【解析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题7、C【解析】根据函数的单调性得到关于k的不等式组,解出即可【详解】解:f(x)==1+,若f(x)在(﹣2,+∞)上单调递增,则,故k≤﹣2,故选:C8、B【解析】根据指数函数和对数函数的单调性知:,即;,即;,即;所以,故正确答案为选项B考点:指数函数和对数函数的单调性;间接比较法9、C【解析】由直观图,确定原图形中线段长度和边关系后可求得面积【详解】由直观图,知,,,所以三角形面积为故选:C10、C【解析】先由图象的变换求出的解析式,再由定义域求出的范围,再利用正弦函数的图象和性质,求得的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,由,则,若函数在上没有零点,结合正弦函数的图象观察则∴,,解得,又,解得,当时,解得,当时,,可得,.故选:C【点睛】本题考查正弦型的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式求解,属于较难题.第II卷11、C【解析】利用函数的奇偶性和单调性将不等式等价为,进而可求得结果.详解】依题意,不等式,又在上是增函数,所以,即或,解得或.故选:C.12、C【解析】由斜二测画法知识得原图形底和高【详解】原图形中,,边上的高为,故面积为32故选:C二、填空题(本大题共4小题,共20分)13、【解析】根据表达式有意义列条件,再求解条件得定义域.【详解】由题知,,整理得解得.所以函数定义域是.故答案为:.14、【解析】根据幂函数定义求出值,再根据单调性确定结果【详解】由题意,解得或,又函数在区间上单调递减,则,∴故答案为:15、②③【解析】利用函数中的定义结合函数的最值、周期以及单调性即可求解.【详解】函数,函数的最大值为小于,故①不正确;函数的最小值为,故②正确;函数每隔一个单位重复一次,所以函数有无数个零点,故③正确;由函数图像,结合函数单调性定义可知,函数在定义域内不单调,故④不正确;故答案为:②③【点睛】本题考查的是取整函数问题,在解答时要充分理解的含义,注意对新函数的最值、单调性以及周期性加以分析,属于基础题.16、【解析】作出f(x)的图像,当时,,当时,.令,则,则该关于t的方程有两个解、,设<,则,.令,则,据此求出a的范围,从而求出b的范围【详解】当时,,当时,,当时,,则f(x)图像如图所示:当时,,当时,令,则,∵关于x的方程恰有六个解,∴关于t的方程有两个解、,设<,则,,令,则,∴且,要存a满足条件,则,解得故答案为:三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)先化简集合A,再去求;(2)结合函数的图象,可以简单快捷地得到关于实数a的不等式组,即可求得实数a的取值范围.【小问1详解】当时,,又,故【小问2详解】由是的充分条件,得,即任意,有成立函数的图象是开口向上的抛物线,故,解得,所以a的取值范围为18、(1);(2)【解析】(1)先求任意角的三角函数的定义求出的值,然后利用诱导公式化简,再代值计算即可,(2)利用诱导公式化简即可【详解】∵角的终边经过点,∴,,(1)原式(2)原式19、【解析】首先根据正切两角和公式得到,再利用诱导公式和二倍角公式化简得到,再分子、分母同除以求解即可.【详解】因为,解得.所以.20、(Ⅰ)证明见解析(Ⅱ)【解析】(Ⅰ)由已知可得,,即可证明结论;(Ⅱ)底面,,根据已知条件求出梯形面积,即可求解.【详解】(Ⅰ)证明:因为底面,平面,所以.因为,,所以.又,所以平面.(Ⅱ)解:由(Ⅰ)可知,在中,,,又因为,则.又,,所以四边形为矩形,四边形为梯形.因为,所以,,,于是四棱锥的体积为.【点睛】本题考查线面垂直的证明,注意空间垂直之间的转化,考查椎体的体积,属于基础题.21、(1);(2);(3).【解析】(1)由函数为奇函数可得,即,整理得,可得,解得,经验证不合题意.(2)根据单调性的定义可证明函数在区间上为增函数,从而可得在区间上的值域为,故,从而可得所有上界构成的集合为.(3)将问题转化为在上恒成立,整理得在上恒成立,通过判断函数的单调性求得即可得到结果试题解析:(1)∵函数是奇函数,∴,即,∴,∴,解得,当时,,不合题意,舍去∴.(2)由(1)得,设,令,且,∵;∴在上是减函数,∴在上是单调递增函数,∴在区间上是单调递增,∴,即,∴在区间上的值域为,∴,故函数在区间上的所有上界构成的集合为.(3)由题意知,上恒成立,∴,∴,因此在上恒成立,∴设,,,由知,设,则,,∴在上单调递减,在上单调递增,∴在上的最大值为,在上的最小值为,∴∴的取值范围.点睛:(1)本题属于新概念问题,解题的关键是要紧紧围绕所给出的新定义,然后将所给问题转化为函数的最值(或值域)问题处理(2)求函数的最值(或值域)时,利用单调性是常用的方法之一,为此需要先根据定义判断出函数的单调性,再结合所给的定义域求出最值(或值域)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论