最新-电路分析英文Lecture8-课件_第1页
最新-电路分析英文Lecture8-课件_第2页
最新-电路分析英文Lecture8-课件_第3页
最新-电路分析英文Lecture8-课件_第4页
最新-电路分析英文Lecture8-课件_第5页
已阅读5页,还剩95页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ECTE170–Lecture8/111ECTE170–Lecture8/1111Chapter14–BoylestadSinusoidalresponseofresistor,inductorandcapacitorLowandhighfrequencyresponseofinductorsandcapacitorsAveragepowerandPowerFactorBasicElementsandPhasors2Chapter14–BoylestadBasicEl2IntroductionTheresponseofthebasicR,L,andCelementstoasinusoidalvoltageandcurrentwillbeexaminedwithaspecialnoteofhowfrequencywillaffectthe“opposing”characteristicofeachelement.Phasornotationwillthenbeintroducedtoestablishamethodofanalysis.3IntroductionTheresponseoft3TheDerivativeTounderstandtheresponseofthebasicR,L,andCelementstoasinusoidalsignal,youneedtoexaminetheconceptofthederivative.Thederivativedx/dtisdefinedastherateofchangeofxwithrespecttotime.Ifxfailstochangeataparticularinstant,dx=0,andthederivativeiszero.Forthesinusoidalwaveform,dx/dtiszeroonlyatthepositiveandnegativepeaks(wt=p/2and3p/2)sincexfailstochangeattheseinstantsoftime.4TheDerivativeTounderstandt4555TheDerivativeThederivativedx/dtisactuallytheslopeofthegraphatanyinstantoftime.Thegreatestchangeinxwilloccurattheinstantswt=0,p,and2p.Forvariousvaluesofwtbetweenthesemaximaandminima,thederivativewillexistandwillhavevaluesfromtheminimumtothemaximuminclusive.Thederivativeofasinewaveisacosinewave;ithasthesameperiodandfrequencyastheoriginalsinusoidalwaveform.6TheDerivativeThederivative6777SinusoidalResponse:ResistorForaresistorthevoltageandcurrentareinphaseandarerelatedbyOhm’slaw8SinusoidalResponse:ResistorF8Thevoltageandcurrentofaresistiveelementareinphase.9Thevoltageandcurrentofar9SinusoidalResponse:InductorsForaninductorthecurrentlagsthevoltageby90degreesXL=Liscalledtheinductivereactance-unit10SinusoidalResponse:Inductors10SinusoidalResponse:WaveformsInductor11SinusoidalResponse:Waveforms11SinusoidalResponse:CapacitorsForacapacitorthecurrentleadsthevoltageby90degreesXc=1/Ciscalledthecapacitivereactance–unit12SinusoidalResponse:Capacitor12SinusoidalResponse:WaveformsCapacitor13SinusoidalResponse:Waveforms13SinusoidalResponseThecurrentthrougha5ohmresistorisi=40sin(377t+30°)A.Findtheexpressionforvoltageacrossit.14SinusoidalResponseThecurrent14SinusoidalResponseThecurrentthrougha0.1Hcoilisi=7sin(377t–70°)A.Findthevoltageacrossit.15SinusoidalResponseThecurrent15161616CapacitorExample17CapacitorExample1717181818Morequestions19Morequestions1919202020212121LowandHighFrequencyResponseforInductorsInductors:XL=ωLAtlowfrequencies,andespeciallyDC,thereactanceofainductorisverylow(zeroforDC)Henceatverylowfrequencies,aninductormaybeconsideredasashortcircuitAsinputfrequenciesbecomeveryhigh,thereactanceofaninductorapproachesinfinityHenceatveryhighfrequencies,aninductormaybeconsideredasanopencircuitBoylestad,PrenticeHall201922LowandHighFrequencyRespons22LowandHighFrequencyResponseforCapacitorsCapacitors:Xc=1/ωCAtlowfrequencies,andespeciallyDC,thereactanceofacapacitorisveryhigh(infiniteforDC)Henceatverylowfrequencies,acapacitormaybeconsideredasanopencircuitAsinputfrequenciesbecomeveryhigh,thereactanceofacapacitorapproaches0ΩHenceatveryhighfrequencies,acapacitormaybeconsideredasashortcircuit23LowandHighFrequencyRespons23AveragePowerandPowerFactorSecondtermhasazeroaveragevalueoveracycleandcausesnoaveragepowerFirsttermisindependentof(a)timeandisconstant(b)whethervleadsorlagsi,andwillbetheAveragePowerortheRealPowerIngeneralv=VmsintandI=Imsin(t-)

24AveragePowerandPowerFactor24AveragePowerandPowerFactorBoylestad,PrenticeHall201925AveragePowerandPowerFactor25AveragePowerandPowerFactorwhereVandIarermsvaluesofthesinusoidalvoltageandcurrentrespectivelyThefactor(cos)whichcontrolstheaveragepowerflowiscalledthePowerFactor.ForaresistorthePowerFactorisunityForaninductororcapacitorPowerFactoriszeroAnotherwayoffindingthePowerFactoristousetheexpression26AveragePowerandPowerFactor26AveragePowerandPowerFactor

Whenthepowerfactorisstateditisimportanttostatewhetheritisleadingorlagginginadditiontoitsvalue(notethatitliesbetween0and1.0)27AveragePowerandPowerFactor27AveragePowerandPowerFactor28AveragePowerandPowerFactor28AveragePowerandPowerFactor29AveragePowerandPowerFactor29303030PowerFactorFpPowerFactor=Fp=cosThetermleadingorlaggingisoftenwritteninconjunctionwiththepowerfactor.Theyaredefinedbythecurrentthroughtheload.IfthecurrentleadthevoltagethenitsaleadingpowerfactorIfthecurrentlagsthevoltagethenitsalaggingpowerfactorCapacitivecircuitshaveleadingpowerfactors,whileInductivecircuitshavelaggingpowerfactors31PowerFactorFpPowerFactor=31ExamplePowerfactor32ExamplePowerfactor3232333333ComplexNumbersAsanessentialtoolcomplexnumberswillbeusedinsolvingaccircuitsRectangularformZ=a+jbwhere‘j’isanoperatorwhichturnstherealnumber‘b’by90°intheanti-clockwisedirectiononthecomplexplanePolarformZ=Z/°

AdditionisconvenientinrectangularformDivision/multiplicationisconvenientinpolarformajb34ComplexNumbersAsanessential34ComplexNumbersDefiningtherectangularform.35ComplexNumbersDefiningthere35PolarformDefiningthepolarform.Demonstratingtheeffectofanegativesignonthepolarform.36PolarformDefiningthepolarf36373737ComplexConjugate38ComplexConjugate3838ConversionBetweenForms39ConversionBetweenForms3939ComplexNumbers40ComplexNumbers4040ComplexNumbers41ComplexNumbers4141MathsOperations42MathsOperations4242434343Polarformoperations44Polarformoperations4444PhasorsandPhasorDiagramsOftenaddition/subtractionofsinusoidalvoltagesandcurrentsisrequiredinaccircuitanalysis.Forexampleconsidertheadditionoftwosinusoidalsignalsv1=Vm1sin(wt+)andv2=Vm2sinwtWecanaddthetwowaveformsonapoint-by-pointbasisasshown(atediousprocess!!)toobtainvT.Boylestad45PhasorsandPhasorDiagramsOft45PhasorsandPhasorDiagramsHoweveritisveryconvenienttorepresentthetwosinusoidalwaveformsv1=Vm1sin(wt+)andv2=Vm2sinwt

asvectorsandthenaddthevectors.Thesevectorsarecalledphasors.V2=Vm2/0VmTPhasordiagramofV1,V2andVTNotethephasorswithunderscore–inthebookshowninboldV1=Vm1/46PhasorsandPhasorDiagramsHo46PhasorsandPhasorDiagramsPhasorsarecharacterisedbyamagnitudeandaphaseangleItiscommontorepresentthemagnitudeofaphasorasanrmsquantityratherthanapeakvalueTheyrepresentasnapshotsoftherotatingvectorsatt=0Theydonotcarryinformationaboutthefrequency

V2=V2/0°VTV1=V1/°47PhasorsandPhasorDiagramsPha47PhasorAddition48PhasorAddition4848494949505050

ECTE170–Lecture8/1151ECTE170–Lecture8/11151Chapter14–BoylestadSinusoidalresponseofresistor,inductorandcapacitorLowandhighfrequencyresponseofinductorsandcapacitorsAveragepowerandPowerFactorBasicElementsandPhasors52Chapter14–BoylestadBasicEl52IntroductionTheresponseofthebasicR,L,andCelementstoasinusoidalvoltageandcurrentwillbeexaminedwithaspecialnoteofhowfrequencywillaffectthe“opposing”characteristicofeachelement.Phasornotationwillthenbeintroducedtoestablishamethodofanalysis.53IntroductionTheresponseoft53TheDerivativeTounderstandtheresponseofthebasicR,L,andCelementstoasinusoidalsignal,youneedtoexaminetheconceptofthederivative.Thederivativedx/dtisdefinedastherateofchangeofxwithrespecttotime.Ifxfailstochangeataparticularinstant,dx=0,andthederivativeiszero.Forthesinusoidalwaveform,dx/dtiszeroonlyatthepositiveandnegativepeaks(wt=p/2and3p/2)sincexfailstochangeattheseinstantsoftime.54TheDerivativeTounderstandt5455555TheDerivativeThederivativedx/dtisactuallytheslopeofthegraphatanyinstantoftime.Thegreatestchangeinxwilloccurattheinstantswt=0,p,and2p.Forvariousvaluesofwtbetweenthesemaximaandminima,thederivativewillexistandwillhavevaluesfromtheminimumtothemaximuminclusive.Thederivativeofasinewaveisacosinewave;ithasthesameperiodandfrequencyastheoriginalsinusoidalwaveform.56TheDerivativeThederivative5657757SinusoidalResponse:ResistorForaresistorthevoltageandcurrentareinphaseandarerelatedbyOhm’slaw58SinusoidalResponse:ResistorF58Thevoltageandcurrentofaresistiveelementareinphase.59Thevoltageandcurrentofar59SinusoidalResponse:InductorsForaninductorthecurrentlagsthevoltageby90degreesXL=Liscalledtheinductivereactance-unit60SinusoidalResponse:Inductors60SinusoidalResponse:WaveformsInductor61SinusoidalResponse:Waveforms61SinusoidalResponse:CapacitorsForacapacitorthecurrentleadsthevoltageby90degreesXc=1/Ciscalledthecapacitivereactance–unit62SinusoidalResponse:Capacitor62SinusoidalResponse:WaveformsCapacitor63SinusoidalResponse:Waveforms63SinusoidalResponseThecurrentthrougha5ohmresistorisi=40sin(377t+30°)A.Findtheexpressionforvoltageacrossit.64SinusoidalResponseThecurrent64SinusoidalResponseThecurrentthrougha0.1Hcoilisi=7sin(377t–70°)A.Findthevoltageacrossit.65SinusoidalResponseThecurrent65661666CapacitorExample67CapacitorExample1767681868Morequestions69Morequestions1969702070712171LowandHighFrequencyResponseforInductorsInductors:XL=ωLAtlowfrequencies,andespeciallyDC,thereactanceofainductorisverylow(zeroforDC)Henceatverylowfrequencies,aninductormaybeconsideredasashortcircuitAsinputfrequenciesbecomeveryhigh,thereactanceofaninductorapproachesinfinityHenceatveryhighfrequencies,aninductormaybeconsideredasanopencircuitBoylestad,PrenticeHall201972LowandHighFrequencyRespons72LowandHighFrequencyResponseforCapacitorsCapacitors:Xc=1/ωCAtlowfrequencies,andespeciallyDC,thereactanceofacapacitorisveryhigh(infiniteforDC)Henceatverylowfrequencies,acapacitormaybeconsideredasanopencircuitAsinputfrequenciesbecomeveryhigh,thereactanceofacapacitorapproaches0ΩHenceatveryhighfrequencies,acapacitormaybeconsideredasashortcircuit73LowandHighFrequencyRespons73AveragePowerandPowerFactorSecondtermhasazeroaveragevalueoveracycleandcausesnoaveragepowerFirsttermisindependentof(a)timeandisconstant(b)whethervleadsorlagsi,andwillbetheAveragePowerortheRealPowerIngeneralv=VmsintandI=Imsin(t-)

74AveragePowerandPowerFactor74AveragePowerandPowerFactorBoylestad,PrenticeHall201975AveragePowerandPowerFactor75AveragePowerandPowerFactorwhereVandIarermsvaluesofthesinusoidalvoltageandcurrentrespectivelyThefactor(cos)whichcontrolstheaveragepowerflowiscalledthePowerFactor.ForaresistorthePowerFactorisunityForaninductororcapacitorPowerFactoriszeroAnotherwayoffindingthePowerFactoristousetheexpression76AveragePowerandPowerFactor76AveragePowerandPowerFactor

Whenthepowerfactorisstateditisimportanttostatewhetheritisleadingorlagginginadditiontoitsvalue(notethatitliesbetween0and1.0)77AveragePowerandPowerFactor77AveragePowerandPowerFactor78AveragePowerandPowerFactor78AveragePowerandPowerFactor79AveragePowerandPowerFactor79803080PowerFactorFpPowerFactor=Fp=cosThetermleadingorlaggingisoftenwritteninconjunctionwiththepowerfactor.Theyaredefinedbythecurrentthroughtheload.IfthecurrentleadthevoltagethenitsaleadingpowerfactorIfthecurrentlagsthevoltagethenitsalaggingpowerfactorCapacitivecircuitshaveleadingpowerfactors,whileInductivecircuitshavelaggingpowerfactors81PowerFactorFpPowerFactor=81ExamplePowerfactor82ExamplePowerfactor3282833383ComplexNumbersAsanessentialtoolcomplexnumberswillbeusedinsolvingaccircuitsRectangularformZ=a+jbwhere‘j’isanoperatorwhichturnstherealnumber‘b’by90°intheanti-clockwisedirectiononthecomplexplanePolarformZ=Z/°

AdditionisconvenientinrectangularformDivision/multiplicationisconvenientinpolarformajb84ComplexNumbersAsanessential84ComplexNumbersDefiningtherectangularform.85ComplexNumbersDefiningthere85PolarformDefiningthepolarform.Demonstratingtheeffectofanegativesignonthepolarform.86PolarformDefiningthepolarf86

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论