版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.2.已知,,,若,则()A. B. C. D.3.设全集,集合,,则集合()A. B. C. D.4.已知复数满足(是虚数单位),则=()A. B. C. D.5.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为()A. B.6 C. D.6.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=()A. B. C. D.7.若,,,则下列结论正确的是()A. B. C. D.8.设集合则()A. B. C. D.9.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.10.如图,在三棱锥中,平面,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为A.0 B. C. D.111.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种12.已知数列an满足:an=2,n≤5a1A.16 B.17 C.18 D.19二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列的各项均为正数,,则的值为________.14.某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,,,,,,得到的频率分布直方图如图所示,则下列说法中正确的是________(填序号).①;②这名学生中数学成绩在分以下的人数为;③这名学生数学成绩的中位数约为;④这名学生数学成绩的平均数为.15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,则a1=_____,a1+a2+…+a5=____16.甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“√”表示猜测某人获奖,“×”表示猜测某人未获奖,而“○”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_______.甲获奖乙获奖丙获奖丁获奖甲的猜测√××√乙的猜测×○○√丙的猜测×√×√丁的猜测○○√×三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.18.(12分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.19.(12分)如图为某大江的一段支流,岸线与近似满足∥,宽度为.圆为江中的一个半径为的小岛,小镇位于岸线上,且满足岸线,.现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切.设.(1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?20.(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.21.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.22.(10分)在角中,角A、B、C的对边分别是a、b、c,若.(1)求角A;(2)若的面积为,求的周长.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【题目详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【答案点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.2.B【答案解析】
由平行求出参数,再由数量积的坐标运算计算.【题目详解】由,得,则,,,所以.故选:B.【答案点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.3.C【答案解析】∵集合,,∴点睛:本题是道易错题,看清所问问题求并集而不是交集.4.A【答案解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】解:由,得,.故选.【答案点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.D【答案解析】
根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【题目详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【答案点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.6.C【答案解析】
设,则,,,设,根据化简得到,得到答案.【题目详解】设,则,,,则,设,则,两式相减得到:,,,即,,,故,即,故,故.故选:.【答案点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.7.D【答案解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【题目详解】由指数函数的性质,可得,即,又由,所以.故选:D.【答案点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.8.C【答案解析】
直接求交集得到答案.【题目详解】集合,则.故选:.【答案点睛】本题考查了交集运算,属于简单题.9.D【答案解析】
由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【题目详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【答案点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.10.B【答案解析】
根据题意可得平面,,则即异面直线与所成的角,连接CG,在中,,易得,所以,所以,故选B.11.B【答案解析】
根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【题目详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【答案点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.12.B【答案解析】
由题意可得a1=a2=a3=a4=a5=2,累加法求得a62+【题目详解】解:an即a1=an⩾6时,a1a1两式相除可得1+a则an2=由a6a7…,ak2=可得aa1且a1正整数k(k⩾5)时,要使得a1则ak+1则k=17,故选:B.【答案点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
运用等比数列的通项公式,即可解得.【题目详解】解:,,,,,,,,,,,.故答案为:.【答案点睛】本题考查等比数列的通项公式及应用,考查计算能力,属于基础题.14.②③【答案解析】
由频率分布直方图可知,解得,故①不正确;这名学生中数学成绩在分以下的人数为,故②正确;设这名学生数学成绩的中位数为,则,解得,故③正确;④这名学生数学成绩的平均数为,故④不正确.综上,说法正确的序号是②③.15.80211【答案解析】
由,利用二项式定理即可得,分别令、后,作差即可得.【题目详解】由题意,则,令,得,令,得,故.故答案为:80,211.【答案点睛】本题考查了二项式定理的应用,属于中档题.16.乙、丁【答案解析】
本题首先可根据题意中的“四个人中有且只有两个人的猜测是正确的”将题目分为四种情况,然后对四种情况依次进行分析,观察四人所猜测的结果是否冲突,最后即可得出结果.【题目详解】从表中可知,若甲猜测正确,则乙,丙,丁猜测错误,与题意不符,故甲猜测错误;若乙猜测正确,则依题意丙猜测无法确定正误,丁猜测错误;若丙猜测正确,则丁猜测错误;综上只有乙,丙猜测不矛盾,依题意乙,丙猜测是正确的,从而得出乙,丁获奖.所以本题答案为乙、丁.【答案点睛】本题是一个简单的合情推理题,能否根据“四个人中有且只有两个人的猜测是正确的”将题目所给条件分为四种情况并通过推理判断出每一种情况的正误是解决本题的关键,考查推理能力,是简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),,表示以为圆心为半径的圆;为抛物线;(2)【答案解析】
(1)消去参数的直角坐标方程,利用,即得的直角坐标方程;(2)由直线与抛物线相切,求导可得切线斜率,再由直线与圆相切,故切线与圆心与切点连线垂直,可求解得到切点坐标,即得解.【题目详解】(1)消去参数的直角坐标方程为:.的极坐标方程.∵,.当时表示以为圆心为半径的圆;为抛物线.(2)设切点为,由于,则切线斜率为,由于直线与圆相切,故切线与圆心与切点连线垂直,故有,直线的直角坐标方程为,所以的极坐标方程为.【答案点睛】本题考查了极坐标,参数方程综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.18..【答案解析】
根据特征多项式可得,可得,进而可得矩阵A的逆矩阵.【题目详解】因为矩阵的特征多项式,所以,所以.因为,且,所以.【答案点睛】本题考查矩阵的特征多项式以及逆矩阵的求解,是基础题.19.(1),定义域是.(2)百万【答案解析】
(1)以为原点,直线为轴建立如图所示的直角坐标系,设,利用直线与圆相切得到,再代入这一关系中,即可得答案;(2)利用导数求函数的最小值,即可得答案;【题目详解】以为原点,直线为轴建立如图所示的直角坐标系.设,则,,.因为,所以直线的方程为,即,因为圆与相切,所以,即,从而得,在直线的方程中,令,得,所以,所以当时,,设锐角满足,则,所以关于的函数是,定义域是.(2)要使建造此通道费用最少,只要通道的长度即最小.令,得,设锐角,满足,得.列表:0减极小值增所以时,,所以建造此通道的最少费用至少为百万元.【答案点睛】本题考查三角函数模型的实际应用、利用导数求函数的最小值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.20.(1)(2)详见解析【答案解析】
(1),在上,因为是减函数,所以恒成立,即恒成立,只需.令,,则,因为,所以.所以在上是增函数,所以,所以,解得.所以实数的最大值为.(2),.令,则,根据题意知,所以在上是增函数.又因为,当从正方向趋近于0时,趋近于,趋近于1,所以,所以存在,使,即,,所以对任意,,即,所以在上是减函数;对任意,,即,所以在上是增函数,所以当时,取得最小值,最小值为.由于,,则,当且仅当,即时取等号,所以当时,.21.(1)(2)3+3【答案解析】
(1)利用余弦的二倍角公式和同角三角函数关系式化简整理并结合范围0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周长.【题目详解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周长a+b+c=3+3.【答案点睛】本题考查三角函数恒等变换的应用,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于中档题.22.(1);(2)1.【答案解析】
(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围A∈(0,π),可求A=.(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周长的值.【题目详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动火特殊作业安全培训
- 医院中药房实习生培训
- 《头颈肩上肢疼痛》课件
- 中建五局安全员述职
- 入职培训要求讲
- 低血糖反应的应急流程
- 团日活动消防安全
- 《员工管理激励心态》课件
- 医疗保健质量与安全管理会议
- 【培训课件】秘书公务礼仪
- 高中思想政治课选择性必修2《法律与生活》教材使用建议与典型课例研究课件
- 数学的发展历史课件
- 外来人员入厂安全告知书
- DB22-T 5036-2020建设工程项目招标投标活动程序标准-(高清正版)
- 工程监理聘用合同(一)
- 写作指导:顺叙倒叙插叙课件
- 小学综合实践活动《息技术-4网络信息辨真伪》优质课件-26
- 四大行当生旦净丑京剧课件
- 计算思维与程序设计课件
- 读后续写练习写作指导 讲义-2023届高考英语写作备考
- 残疾儿童送教上门教案10篇
评论
0/150
提交评论