吉林省白城十四中2022年数学高一上期末质量跟踪监视模拟试题含解析_第1页
吉林省白城十四中2022年数学高一上期末质量跟踪监视模拟试题含解析_第2页
吉林省白城十四中2022年数学高一上期末质量跟踪监视模拟试题含解析_第3页
吉林省白城十四中2022年数学高一上期末质量跟踪监视模拟试题含解析_第4页
吉林省白城十四中2022年数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知函数且,则实数的取值范围为()A. B.C. D.2.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位3.函数的最小正周期是A. B.C. D.4.已知向量,且,则实数=A B.0C.3 D.5.函数在区间上的最小值是A. B.0C. D.26.若,则cos2x=()A. B.C. D.7.已知a>0,那么2+3a+4A.23 B.C.2+23 D.8.已知光线每通过一块特制玻璃板,强度要减弱,要使通过玻璃板光线强度减弱到原来的以下,则至少需要重叠玻璃版块数为(参考数据:)()A.4 B.5C.6 D.79.“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为,则原梯形的面积为()A.2 B.C.2 D.411.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.12.已知函数,则()A.﹣1 B.C. D.3二、填空题(本大题共4小题,共20分)13.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2球,则2球颜色相同的概率等于________14.若函数,则函数的值域为___________.15.已知,若存在定义域为的函数满足:对任意,,则___________.16.已知直线:,直线:,若,则__________三、解答题(本大题共6小题,共70分)17.已知圆,直线,点在直线上,过点作圆的切线,切点分别为.(Ⅰ)若,求点的坐标;(Ⅱ)求证:经过三点圆必过定点,并求出所有定点的坐标.18.已知函数(且)为奇函数.(1)求n的值;(2)若,判断函数在区间上的单调性并用定义证明;(3)在(2)的条件下证明:当时,.19.在平面直角坐标系中,已知直线.(1)若直线在轴上的截距为-2,求实数的值,并写出直线的截距式方程;(2)若过点且平行于直线的直线的方程为:,求实数的值,并求出两条平行直线之间的距离.20.若函数在定义域内存在实数使成立,则称函数有“漂移点”.(1)函数是否有漂移点?请说明理由;(2)证明函数在上有漂移点;(3)若函数在上有漂移点,求实数的取值范围.21.已知直线,.(1)若,求的值;(2)若,求的值.22.已知函数)的最大值为2(1)求m的值;(2)求使成立的x的取值集合;(3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】易知函数为奇函数,且在R上为增函数,则可化为,则即可解得a的范围.【详解】函数,定义域为,满足,∴,令,∴,∴为奇函数,,∵函数,在均为增函数,∴在为增函数,∴在为增函数,∵为奇函数,∴在为增函数,∴,解得.故选:B.2、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同3、D【解析】分析:直接利用周期公式求解即可.详解:∵,,∴.故选D点睛:本题主要考查三角函数的图象与性质,属于简单题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.4、C【解析】由题意得,,因为,所以,解得,故选C.考点:向量的坐标运算.5、A【解析】函数,可得的对称轴为,利用单调性可得结果【详解】函数,其对称轴为,在区间内部,因为抛物线的图象开口向上,所以当时,在区间上取得最小值,其最小值为,故选A【点睛】本题考查二次函数的最值,注意分析的对称轴,属于基础题.若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域.6、D【解析】直接利用二倍角公式,转化求解即可【详解】解:,则cos2x=1﹣2sin2x=1﹣2故选D【点睛】本题考查二倍角的三角函数,考查计算能力7、D【解析】利用基本不等式求解.【详解】因为a>0,所以2+3a+4当且仅当3a=4a,即故选:D8、D【解析】设至少需要经过这样的块玻璃板,则,即,两边同时取以10为底的对数,可得,进而求解即可,需注意【详解】设至少需要经过这样的块玻璃板,则,即,所以,即,因为,所以,故选:D【点睛】本题考查利用对数的运算性质求解,考查指数函数的实际应用9、B【解析】先根据“关于x的不等式x2-2ax+a>0对x∈R恒成立”得0<a<1【详解】设p:“关于x的不等式x2-2ax+a>0对x∈R恒成立则由p知一元二次函数y=x2-2ax+a的图象开口向上,且所以对于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1⊊所以“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立”故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含10、D【解析】由斜二测画法原理,把该梯形的直观图还原为原来的梯形,结合图形即可求得面积【详解】由斜二测画法原理,把该梯形的直观图还原为原来的梯形,如图所示;设该梯形的上底为a,下底为b,高为h,则直观图中等腰梯形的高为h′=hsin45°;∵等腰梯形的体积为(a+b)h′=(a+b)•hsin45°=,∴(a+b)•h==4,∴该梯形的面积为4故选D【点睛】本题考查了平面图形的直观图的还原与求解问题,解题时应明确直观图与原来图形的区别和联系,属于基础题11、A【解析】由图象确定以及周期,进而得出,再由得出的值.【详解】显然因为,所以,所以由得所以,即,因为,所以所以.故选:A【点睛】本题主要考查了由函数图象确定正弦型函数的解析式,属于中档题.12、C【解析】先计算,再代入计算得到答案.【详解】,则故选:【点睛】本题考查了分段函数的计算,意在考查学生的计算能力.二、填空题(本大题共4小题,共20分)13、【解析】把4个球编号,用列举法写出所有基本事件,并得出2球颜色相同的事件,计数后可计算概率【详解】2个红球编号为,2个白球编号为,则依次取2球的基本事件有:共6个,其中2球颜色相同的事件有共2个,所求概率为故答案为:14、【解析】求出函数的定义域,进而求出的范围,利用换元法即可求出函数的值域.【详解】由已知函数的定义域为又,定义域需满足,令,因为,所以,利用二次函数的性质知,函数的值域为故答案为:.15、-2【解析】由已知可得为偶函数,即,令,由,可得,计算即可得解.【详解】对任意,,将函数向左平移2个单位得到,函数为偶函数,所以,令,由,可得,解得:.故答案为:.16、1【解析】根据两直线垂直时,系数间满足的关系列方程即可求解.【详解】由题意可得:,解得:故答案为:【点睛】本题考查直线垂直的位置关系,考查理解辨析能力,属于基础题.三、解答题(本大题共6小题,共70分)17、(1)点的坐标为或(2)见解析,过的圆必过定点和【解析】(1)设,由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆,根据点P在直线上得到,代入上式可求出,进而得到定点解析:(Ⅰ)设,由题可知,即,解得:,故所求点的坐标为或.(2)设的中点为,过三点的圆是以为直径的圆,设,则又∵圆又∵代入(1)式,得:整理得:无论取何值时,该圆都经过的交点或综上所述,过的圆必过定点和点睛:这个题目考查的是直线和圆的位置关系;一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值18、(1);(2)在上单调递增,证明见解析;(3)证明见解析.【解析】(1)由奇函数的定义可得,然后可得,进而计算得出n的值;(2)由可得,则,然后利用定义证明函数单调性即可;(3)由(2)知,先可证得,又,可证得,最后得出结论即可.【详解】(1)函数定义域为,且为奇函数,所以有,即,整理得,由条件可得,所以,即;(2)由,得,此时,任取,且,则,因为,所以,,,所以,则,所以,即,所以函数在上单调递增;(3)由(2)知,函数在上单调递增,当时,,又,从而,又,而当时,,,所以,综上,当时,.【点睛】方法点睛:利用定义证明函数单调性的步骤:①取值,②作差、变形(变形主要指通分、因式分解、合并同类项等),③定号,④判断.19、(1)直线的截距式方程为:;(2).【解析】(1)直线在轴上的截距为,等价于直线经过点,代入直线方程得,所以,从而可得直线的一般式方程,再化为截距式即可;(2)把点代入直线的方程为可求得,由两直线平行得:,所以,因为两条平行直线之间的距离就是点到直线的距离,所以由点到直线距离公式可得结果.试题解析:(1)因为直线在轴上的截距为-2,所以直线经过点,代入直线方程得,所以.所以直线的方程为,当时,,所以直线的截距式方程为:.(2)把点代入直线的方程为:,求得由两直线平行得:,所以因为两条平行直线之间的距离就是点到直线的距离,所以.20、(1)没有,理由见解析;(2)证明见解析;(3).【解析】(1)根据给定定义列方程求解判断作答.(2)根据给定定义构造函数,由零点存在性定理判断函数的零点情况即可作答.(3)根据给定定义列方程,变形构造函数,利用函数有零点分类讨论计算作答.【小问1详解】假设函数有“漂移点”,则,此方程无实根,所以函数没有漂移点.【小问2详解】令,,则,有,即有,而函数在单调递增,因此,在上有一个实根,所以函数在上有漂移点.小问3详解】依题意,设在上的漂移点为,则,即,亦即,整理得:,由已知可得,令,,则在上有零点,当时,的图象的对称轴为,而,则,即,整理得,解得,则,当时,,0,则不成立,当时,,在上单调递增,又,则恒大于0,因此,在上没有零点.综上得,.【点睛】思路点睛:涉及一元二次方程的实根分布问题,可借助二次函数的图象及其性质,利用数形结合的方法解决问题.21、(1);(2)【解析】(1)利用两条直线垂直的条件,结合两条直线的方程可得1×(m﹣2)+m×3=0,由此求得m的值(2)利用两直线平行的条件,结合两条直线的方程可得,由此求得得m的值【详解】(1)∵直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,由l1⊥l2,可得1×(m﹣2)+m×3=0,解得(2)由题意可知m不等于0,由l1∥l2可得,解得m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论