平行线的性质定理命题课件_第1页
平行线的性质定理命题课件_第2页
平行线的性质定理命题课件_第3页
平行线的性质定理命题课件_第4页
平行线的性质定理命题课件_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平行线的性质定理命题平行线的性质定理命题1它与地面所成的较大的角是多少度目前,它与地面所成的较小的角为∠1=85º123它与地面所目前,它与地面所成的较小的角12325.3平行线的性质5.3.1平行线的性质5.3平行线的性质3复习回忆两直线平行

1、同位角相等2、内错角相等3、同旁内角互补平行线的判定方法是什么?反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?复习回忆两直线平行1、同位角相等平行线的判定方法4心动不如行动猜一猜∠1和∠2相等吗?b12ac交流合作,探索发现心动不如行动猜一猜∠1和∠2相等吗?b1565°65°cab12合作交流一量一量65°65°cab12合作交流一量一量6b2ac1拼一拼∠1=∠2b2ac1拼一拼∠1=∠27

是不是任意一条直线去截平行线a、b

所得的同位角都相等呢?看一看想一想是不是任意一条直线去截平行线a、b看一看想一想8两直线平行,同位角相等.平行线的性质1结论

两条平行线被第三条直线所截,

同位角相等.性质发现∴∠1=∠2.∵a∥b,简写为:符号语言:b12ac两直线平行,同位角相等.平行线的性质1结论两条平行线9如图:a//b,那么2与3相等吗?为什么?解∵a∥b(),∴∠1=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).合作交流二b12ac3如图:a//b,那么2与3相等吗?解∵a∥b()10两直线平行,内错角相等.平行线的性质2结论

两条平行线被第三条直线所截,

内错角相等.性质发现∴∠2=∠3.∵a∥b,符号语言:简写为:b12ac3两直线平行,内错角相等.平行线的性质2结论两条平行线11解:∵a//b〔〕,

如图,a//b,那么2与4有什么关系呢?为什么?合作交流三b12ac4∴1=2〔两直线平行,

同位角相等〕.

∵1+4=180°

〔邻补角定义〕,

∴2+4=180°

〔等量代换〕.解:∵a//b〔〕,

如图,a//b,那么2与4有什12两直线平行,同旁内角互补.平行线的性质3结论

两条平行线被第三条直线所截,

同旁内角互补.性质发现∴2+4=180°.∵a∥b,符号语言:简写为:b12ac4两直线平行,同旁内角互补.平行线的性质3结论两条平行13例如图,直线a∥b,∠1=500,求∠2的度数.abc12∴∠2=500(等量代换).解:∵a∥b(),∴∠1=∠2(两直线平行,内错角相等).又∵∠1=500(),变式1:条件不变,求∠3,∠4的度数?34师生互动,典例示范例如图,直线a∥b,abc12∴∠2=14变式2:∠3=∠4,∠1=47°,求∠2的度数?∴∠2=470〔〕解:∵∠3=∠4(

)∴a∥b()又∵∠1=470()c1234abd两直线平行,同位角相等同位角相等,两直线平行变式2:∠3=∠4,∠1=47°,求∠2的度数?∴∠2=15如图在四边形ABCD中,AB∥CD,∠B=600.①求∠C的度数;②由条件能否求得∠A的度数?ABCD解:①∵AB∥CD(),∴∠B+∠C=1800(两直线平行,同旁内角互补).又∵∠B=600(),∴∠C=1200(等式的性质).②根据题目的条件,无法求出∠A的度数.施展你的才能如图在四边形ABCD中,AB∥CD,ABCD解:16如图,在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向一样,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?1420BCAD?解:∵AB∥CD〔〕,∴∠B=∠C(两直线平行,内错角相等).又∵∠B=142°〔〕,∴∠B=∠C=142°〔等量代换〕.展示你的才华如图,在汶川大地震当中,一辆抗震救灾汽车经过一条17DCEFAAGG12小明在纸上画了一个角∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一局部,如果不能延长DC、FE的话,你能帮他设计出多少种方法可以测出∠A的度数?挑战无处不在DCEFAAGG12小明在纸上画了一个角∠A,准备用181它与地面所成的较大的角是多少度950目前,它与地面所成的较小的角为∠1=85º231它与地面所950目前,它与地面所成的较小的角2319思考:如果两条平行直线被第三直线所截,那么同位角的平分线有什么关系?请画出图形并说明理由;内错角的平分线呢?同旁内角的平分线呢?思考:如果两条平行直线被第三直线所截,那么同位角的平分线有什20两直线平行同位角相等内错角相等同旁内角互补线的关系角的关系判定性质平行线的性质和平行线的判定方法的区别与

联系

小结两直线平行同位角相等内错角相等同旁内角互补线的关系角的关系判215.3.2命题、定理5.3.2命题、定理22以下语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?1、对顶角相等;2、画一个角等于角;3、两直线平行,同位角相等;4、a、b两条直线平行吗?5、温柔的李明明;6、玫瑰花是动物;7、假设a2=4,求a的值;8、假设a2=b2,那么a=b。否是否否是否是是√对事情作了判断的语句是否正确?√×练习×以下语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作23〔2〕、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。如:画线段AB=CD。1.定义:判断一件事情的语句叫做命题。注意:〔1〕、只要对一件事情作出了判断,不管正确与否,都是命题。如:相等的角是对顶角。〔2〕、如果一个句子没有对某一件事情作出任何判断,那么它就不24例1:判断以下五个语句中,哪个是命题,哪个不是命题?并说明理由:1〕对顶角相等吗?2〕作一条线段AB=2cm;3〕我爱初一〔1〕班;4〕两条直线平行,同位角相等;5〕相等的两个角,一定是对顶角;例1:判断以下五个语句中,哪个是1〕对顶角相等吗?2〕作一条252.命题的组成:命题是由题设(或条件)和结论两局部组成。题设是事项,结论是由事项推出的事项。

两直线平行,同位角相等。题设〔条件〕结论2.命题的组成:命题是由题设(或条件)和结论两局部组成。题设26命题一般都写成“如果…,那么…〞的形式。“如果〞后接的局部是题设,“那么〞后接的局部是结论。如命题:熊猫没有翅膀。改写为:如果这个动物是熊猫,那么它就没有翅膀。注意:添加“如果〞、“那么〞后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套。命题一般都写成“如果…,那么…〞的形式。“如果〞后接的局部是27例2:把以下命题写成“如果……那么……〞的形式。并指出它的题设和结论。1、对顶角相等;2、内错角相等;3、两直线被第三直线所截,同位角相等;4、同平行于一直线的两直线平行;5、

直角三角形的两个锐角互余;6、等角的补角相等;7、正数与负数的和为0。例2:把以下命题写成“如果……那么……〞的形式。并指出它的题28有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立。如命题:“如果两个角互补,那么它们是邻补角〞就是一个错误的命题。如命题:“如果一个数能被4整除,那么它也能被2整除〞就是一个正确的命题。有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时294.正确的命题叫真命题,错误的命题叫假命题。确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法。4.正确的命题叫真命题,错误的命题叫假命题。确定一个命题真假30例3:将以下的命题写成“如果…..,那么.…..〞的形式,并判断它的真假。1〕等角的余角相等;2〕内错角相等,两直线平行;3〕有理数一定是自然数;4〕两条直线平行,同位角相等;5〕相等的两个角,一定是对顶角;例3:将以下的命题写成“如果…..,那么.…..〞的形式,315、数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。6、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。公理和定理都可作为判断其他命题真假的依据。5、数学中有些命题的正确性是人们在长期实践中总结出来的,并把322〕两条直线相交,有且只有一个交点〔〕4〕一个平角的度数是180度〔〕6〕取线段AB的中点C;〔〕1〕长度相等的两条线段是相等的线段吗?〔〕7〕画两条相等的线段〔〕练习1:以下语句是不是命题?是用“√〞,不是用“×表示。3〕不相等的两个角不是对顶角〔〕5〕相等的两个角是对顶角〔〕×√××√√√2〕两条直线相交,有且只有一个交点〔〕4〕一个平角的度335〕假设A=B,那么2A=2B〔〕9〕同旁内角互补〔〕4〕两点可以确定一条直线〔〕1〕互为邻补角的两个角的平分线互相垂直〔〕2〕一个角的补角大于这个角〔〕2:判断以下命题的真假。真的用“√〞,假的用“×表示。7〕两点之间线段最短〔〕3〕相等的两个角是对顶角〔〕×√8〕同角的余角相等〔〕6〕锐角和钝角互为补角〔〕×√√×√√×5〕假设A=B,那么2A=2B〔〕9〕同旁内角互补343.以下句子哪些是命题?是命题的,指出是真命题还是假命题?1、猪有四只脚;2、内错角相等;3、画一条直线;4、四边形是正方形;5、你的作业做完了吗?

6、同位角相等,两直线平行;7、对顶角相等;8、同垂直于一直线的两直线平行;9、过点P画线段MN的垂线;10、x>2是真命题否是假命题是假命题否是真命题是真命题是假命题否否3.以下句子哪些是命题?是命题的,指出是真命题还是假命题?35公理举例:经过两点有且只有一条直线。2、线段公理:两点的所有连线中,线段最短。4、平行线判定公理:同位角相等,两直线平行。5、平行线性质公理:两直线平行,同位角相等。1、直线公理:3、平行公理:经过直线外一点,有且只有一条直线与直线平行。公理举例:经过两点有且只有一条直线。2、线段公理:两点的所有36同角或等角的补角相等。2、余角的性质:同角或等角的余角相等。4、垂线的性质:①过一点有且只有一条直线与直线垂直;5、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。1、补角的性质:3、对顶角的性质:对顶角相等。②垂线段最短。定理举例:同角或等角的补角相等。2、余角的性质:同角或等角的余角相等。37内错角相等,两直线平行。同旁内角互补,两直线平行。6、平行线的判定定理:7、平行线的性质定理:两直线平行,内错角相等。两直线平行,同旁内角互补。定理举例:内错角相等,两直线平行。同旁内角互补,两直线平行。6、平行线38课堂小结1、命题:判断一件事情的语句叫命题。2、公理:人们长期以来在实践中总结出来的,并作为判断其他命题真假的根据的命题,叫做公理。3、定理:经过推理论证为正确的命题叫定理。也可作为继续推理的依据。4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推理的方法证明〔公理和定理都是真命题〕;判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例。〔1〕正确的命题称为真命题,错误的命题称为假命题。〔2〕命题的构造:命题由题设和结论两局部构成,常可写成“如果…,那么…〞的形式。课堂小结1、命题:判断一件事情的语句叫命题。2、公理:人们长39ThankYou世界触手可及携手共进,齐创精品工程ThankYou世界触手可及携手共进,齐创精品工程40谢谢观赏谢谢观赏41平行线的性质定理命题平行线的性质定理命题42它与地面所成的较大的角是多少度目前,它与地面所成的较小的角为∠1=85º123它与地面所目前,它与地面所成的较小的角123435.3平行线的性质5.3.1平行线的性质5.3平行线的性质44复习回忆两直线平行

1、同位角相等2、内错角相等3、同旁内角互补平行线的判定方法是什么?反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?复习回忆两直线平行1、同位角相等平行线的判定方法45心动不如行动猜一猜∠1和∠2相等吗?b12ac交流合作,探索发现心动不如行动猜一猜∠1和∠2相等吗?b14665°65°cab12合作交流一量一量65°65°cab12合作交流一量一量47b2ac1拼一拼∠1=∠2b2ac1拼一拼∠1=∠248

是不是任意一条直线去截平行线a、b

所得的同位角都相等呢?看一看想一想是不是任意一条直线去截平行线a、b看一看想一想49两直线平行,同位角相等.平行线的性质1结论

两条平行线被第三条直线所截,

同位角相等.性质发现∴∠1=∠2.∵a∥b,简写为:符号语言:b12ac两直线平行,同位角相等.平行线的性质1结论两条平行线50如图:a//b,那么2与3相等吗?为什么?解∵a∥b(),∴∠1=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).合作交流二b12ac3如图:a//b,那么2与3相等吗?解∵a∥b()51两直线平行,内错角相等.平行线的性质2结论

两条平行线被第三条直线所截,

内错角相等.性质发现∴∠2=∠3.∵a∥b,符号语言:简写为:b12ac3两直线平行,内错角相等.平行线的性质2结论两条平行线52解:∵a//b〔〕,

如图,a//b,那么2与4有什么关系呢?为什么?合作交流三b12ac4∴1=2〔两直线平行,

同位角相等〕.

∵1+4=180°

〔邻补角定义〕,

∴2+4=180°

〔等量代换〕.解:∵a//b〔〕,

如图,a//b,那么2与4有什53两直线平行,同旁内角互补.平行线的性质3结论

两条平行线被第三条直线所截,

同旁内角互补.性质发现∴2+4=180°.∵a∥b,符号语言:简写为:b12ac4两直线平行,同旁内角互补.平行线的性质3结论两条平行54例如图,直线a∥b,∠1=500,求∠2的度数.abc12∴∠2=500(等量代换).解:∵a∥b(),∴∠1=∠2(两直线平行,内错角相等).又∵∠1=500(),变式1:条件不变,求∠3,∠4的度数?34师生互动,典例示范例如图,直线a∥b,abc12∴∠2=55变式2:∠3=∠4,∠1=47°,求∠2的度数?∴∠2=470〔〕解:∵∠3=∠4(

)∴a∥b()又∵∠1=470()c1234abd两直线平行,同位角相等同位角相等,两直线平行变式2:∠3=∠4,∠1=47°,求∠2的度数?∴∠2=56如图在四边形ABCD中,AB∥CD,∠B=600.①求∠C的度数;②由条件能否求得∠A的度数?ABCD解:①∵AB∥CD(),∴∠B+∠C=1800(两直线平行,同旁内角互补).又∵∠B=600(),∴∠C=1200(等式的性质).②根据题目的条件,无法求出∠A的度数.施展你的才能如图在四边形ABCD中,AB∥CD,ABCD解:57如图,在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向一样,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?1420BCAD?解:∵AB∥CD〔〕,∴∠B=∠C(两直线平行,内错角相等).又∵∠B=142°〔〕,∴∠B=∠C=142°〔等量代换〕.展示你的才华如图,在汶川大地震当中,一辆抗震救灾汽车经过一条58DCEFAAGG12小明在纸上画了一个角∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一局部,如果不能延长DC、FE的话,你能帮他设计出多少种方法可以测出∠A的度数?挑战无处不在DCEFAAGG12小明在纸上画了一个角∠A,准备用591它与地面所成的较大的角是多少度950目前,它与地面所成的较小的角为∠1=85º231它与地面所950目前,它与地面所成的较小的角2360思考:如果两条平行直线被第三直线所截,那么同位角的平分线有什么关系?请画出图形并说明理由;内错角的平分线呢?同旁内角的平分线呢?思考:如果两条平行直线被第三直线所截,那么同位角的平分线有什61两直线平行同位角相等内错角相等同旁内角互补线的关系角的关系判定性质平行线的性质和平行线的判定方法的区别与

联系

小结两直线平行同位角相等内错角相等同旁内角互补线的关系角的关系判625.3.2命题、定理5.3.2命题、定理63以下语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?1、对顶角相等;2、画一个角等于角;3、两直线平行,同位角相等;4、a、b两条直线平行吗?5、温柔的李明明;6、玫瑰花是动物;7、假设a2=4,求a的值;8、假设a2=b2,那么a=b。否是否否是否是是√对事情作了判断的语句是否正确?√×练习×以下语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作64〔2〕、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。如:画线段AB=CD。1.定义:判断一件事情的语句叫做命题。注意:〔1〕、只要对一件事情作出了判断,不管正确与否,都是命题。如:相等的角是对顶角。〔2〕、如果一个句子没有对某一件事情作出任何判断,那么它就不65例1:判断以下五个语句中,哪个是命题,哪个不是命题?并说明理由:1〕对顶角相等吗?2〕作一条线段AB=2cm;3〕我爱初一〔1〕班;4〕两条直线平行,同位角相等;5〕相等的两个角,一定是对顶角;例1:判断以下五个语句中,哪个是1〕对顶角相等吗?2〕作一条662.命题的组成:命题是由题设(或条件)和结论两局部组成。题设是事项,结论是由事项推出的事项。

两直线平行,同位角相等。题设〔条件〕结论2.命题的组成:命题是由题设(或条件)和结论两局部组成。题设67命题一般都写成“如果…,那么…〞的形式。“如果〞后接的局部是题设,“那么〞后接的局部是结论。如命题:熊猫没有翅膀。改写为:如果这个动物是熊猫,那么它就没有翅膀。注意:添加“如果〞、“那么〞后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套。命题一般都写成“如果…,那么…〞的形式。“如果〞后接的局部是68例2:把以下命题写成“如果……那么……〞的形式。并指出它的题设和结论。1、对顶角相等;2、内错角相等;3、两直线被第三直线所截,同位角相等;4、同平行于一直线的两直线平行;5、

直角三角形的两个锐角互余;6、等角的补角相等;7、正数与负数的和为0。例2:把以下命题写成“如果……那么……〞的形式。并指出它的题69有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立。如命题:“如果两个角互补,那么它们是邻补角〞就是一个错误的命题。如命题:“如果一个数能被4整除,那么它也能被2整除〞就是一个正确的命题。有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时704.正确的命题叫真命题,错误的命题叫假命题。确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法。4.正确的命题叫真命题,错误的命题叫假命题。确定一个命题真假71例3:将以下的命题写成“如果…..,那么.…..〞的形式,并判断它的真假。1〕等角的余角相等;2〕内错角相等,两直线平行;3〕有理数一定是自然数;4〕两条直线平行,同位角相等;5〕相等的两个角,一定是对顶角;例3:将以下的命题写成“如果…..,那么.…..〞的形式,725、数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。6、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。公理和定理都可作为判断其他命题真假的依据。5、数学中有些命题的正确性是人们在长期实践中总结出来的,并把732〕两条直线相交,有且只有一个交点〔〕4〕一个平角的度数是180度〔〕6〕取线段AB的中点C;〔〕1〕长度相等的两条线段是相等的线段吗?〔〕7〕画两条相等的线段〔〕练习1:以下语句是不是命题?是用“√〞,不是用“×表示。3〕不相等的两个角不是对顶角〔〕5〕相等的两个角是对顶角〔〕×√××√√√2〕两条直线相交,有且只有一个交点〔〕4〕一个平角的度745〕假设A=B,那么2A=2B〔〕9〕同旁内角互补〔〕4〕两点可以确定一条直线〔〕1〕互为邻补角的两个角的平分线互相垂直〔〕2〕一个角的补角大于这个角〔〕2:判断以下命题的真假。真的用“√〞,假的用“×表示。7〕两点之间线段最短〔〕3〕相等的两个角是对顶角〔〕×√8〕同角的余角相等〔

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论