




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Lecture8AutomaticTestPatternGeneration第八讲自动测试生成Lecture8AutomaticTestPatte1Contents
内容目录TestabilityMeasures/可测试性测度CombinationalCircuitATPG/组合电路ATPGSequentialCircuitATPG/
时序电路ATPGSummary/小结Contents
内容目录TestabilityMeasu21TestabilityMeasures
可测试性测度Needapproximatemeasureof:Controllability--Difficultyofsettinginternalcircuitlinesto0or1bysettingprimarycircuitinputsObservability--Difficultyofobservinginternalcircuitlinesbyobservingprimaryoutputs1TestabilityMeasures
可测试性测度N31.1Purpose
目的Uses:Analysisofdifficultyoftestinginternalcircuitparts–redesignoraddspecialtesthardwareGuidanceforalgorithmscomputingtestpatterns–avoidusinghard-to-controllinesEstimationoffaultcoverageEstimationoftestvectorlength1.1Purpose
目的Uses:41.2Origins
起源ControltheoryRutman1972--FirstdefinitionofcontrollabilityGoldstein1979--SCOAPFirstdefinitionofobservabilityFirstelegantformulationFirstefficientalgorithmtocomputecontrollabilityandobservabilityParker&McCluskey1975DefinitionofProbabilisticControllabilityBrglez1984--COP1stprobabilisticmeasuresSeth,Pan&Agrawal1985–PREDICT1stexactprobabilisticmeasures1.2Origins
起源Controltheory51.3TestabilityAnalysis
可测试性分析InvolvesCircuitTopologicalanalysis,butnotestvectorsandnosearchalgorithm.StaticanalysisLinearcomputationalcomplexity,Otherwise,ispointless–mightaswelluseautomatictest-patterngenerationandcalculate:ExactfaultcoverageExacttestvectors1.3TestabilityAnalysis
可测试性分61.4SCOAPmeasures
SCOAP测度SCOAP–SandiaControllabilityandObservabilityAnalysisProgramCombinationalmeasures:CC0–Difficultyofsettingcircuitlinetologic0CC1–Difficultyofsettingcircuitlinetologic1CO–DifficultyofobservingacircuitlineSequentialmeasures–analogous:SC0SC1SO1.4SCOAPmeasures
SCOAP测度SCOA71.4.1RangeofSCOAPMeasures
SCOAP测度范围Controllabilities–1(easiest)toinfinity(hardest)Observabilities–0(easiest)toinfinity(hardest)Combinationalmeasures:Roughlyproportionalto#circuitlinesthatmustbesettocontrolorobservegivenlineSequentialmeasures:Roughlyproportionalto#timesaflip-flopmustbeclockedtocontrolorobservegivenline1.4.1RangeofSCOAPMeasures81.4.2ControllabilityRules
可控制性规则1.4.2ControllabilityRules
可控91.4.2ControllabilityRules(Cont.)
可控制性规则(续)1.4.2ControllabilityRules(C101.4.3ObservabilityRules
可观察性规则Toobserveagateinput:Observeoutputandmakeotherinputvaluesnon-controlling1.4.3ObservabilityRules
可观察性111.4.3ObservabilityRules(Cont.)
可观察性规则Toobserveafanoutstem:Observeitthroughbranchwithbestobservability1.4.3ObservabilityRules(Con121.4.4DFlip-FlopRules
D触发器规则AssumeasynchronousRESETline.CC1(Q)=CC1(D)+CC1(C)+CC0(C)+CC0
(RESET)SC1(Q)=SC1(D)+SC1(C)+SC0(C)+SC0
(RESET)+1CC0(Q)=min[CC1(RESET)+CC1(C)+CC0(C),CC0(D)+CC1(C)+CC0(C)]SC0(Q)isanalogousCO(D)=CO(Q)+CC1(C)+CC0(C)+CC0(RESET)SO(D)isanalogous1.4.4DFlip-FlopRules
D触发器规则131.4.4DFlip-FlopRules(Cont.)
D触发器规则(续)CO(RESET)=CO(Q)+CC1(Q)+CC1(RESET)+CC1(C)+CC0(C)SO(RESET)isanalogousThreewaystoobservetheclockline:SetQto1andclockina0fromDSettheflip-flopandthenresetitResettheflip-flopandclockina1fromDCO(C)=min[CO(Q)+CC1(Q)+CC0(D)+CC1(C)+CC0(C),CO(Q)+CC1(Q)+CC1(RESET)+
CC1(C)+CC0(C),CO(Q)+CC0(Q)+CC0(RESET)+CC1(D)+CC1(C)+CC0(C)]SO(C)isanalogous1.4.4DFlip-FlopRules(Cont.141.4.5LevelizationAlgorithm6.1
分级算法Labeleachgatewithmax#oflogiclevelsfromprimaryinputsorwithmax#oflogiclevelsfromprimaryoutputAssignlevel#0toallprimaryinputs(PIs)ForeachPIfanout:LabelthatlinewiththePIlevelnumber,&QueuelogicgatedrivenbythatfanoutWhilequeueisnotempty:DequeuenextlogicgateIfallgateinputshavelevel#’s,labelthegatewiththemaximumofthem+1;Else,requeuethegate1.4.5LevelizationAlgorithm6151.4.6TestabilityAlgorithm6.2
可测试性算法ForallPIs,CC0=CC1=1andSC0=SC1=0Forallothernodes,CC0=CC1=SC0=SC1=GofromPIstoPOS,usingCCandSCequationstogetcontrollabilities--IterateonloopsuntilSCstabilizes--convergenceguaranteedForallPOs,setCO=SO=
0Forallothernodes,
CO=SO=WorkfromPOstoPIs,UseCO,SO,andcontrollabilitiestogetobservabilitiesFanoutstem(CO,SO)=minbranch(CO,SO)IfaCCorSC(COorSO)is,thatnodeisuncontrollable(unobservable)8881.4.6TestabilityAlgorithm6.162CombinationalCircuitATPG
组合电路ATPGElectron-beam(E-beam)testobservesinternalsignals–“picture”ofnodeschargedto0and1indifferentcolorsTooexpensiveTheATPGproblem:Givenalogicalfaultmodel,andacircuit,determineasmallsetoftestvectorsthatdetectallfaultsinthecircuit.2CombinationalCircuitATPG
172.1Functionalvs.StructuralATPG
功能和结构测试2.1Functionalvs.Structural182.1.1Compare
比较FunctionalATPG–generatecompletesetoftestsforcircuitinput-outputcombinations129inputs,65outputs:2129=680,564,733,841,876,926,926,749,214,863,536,422,912patternsUsing1GHzATE,wouldtake2.15x1022yearsStructuraltest:Noredundantadderhardware,64bitslicesEachwith27faults(usingfaultequivalence)Atmost64x27=1728faults(tests)Takes0.000001728son1GHzATEDesignergivessmallsetoffunctionaltests–augmentwithstructuralteststoboostcoverageto98+%2.1.1Compare
比较FunctionalATP192.2AlgorithmCompleteness
算法完备性Definition:Algorithmiscompleteifitultimatelycansearchentirebinarydecisiontree,asneeded,togenerateatestUntestablefault–notestforitevenafterentiretreesearchedCombinationalcircuitsonly–untestablefaultsareredundant,showingthepresenceofunnecessaryhardware2.2AlgorithmCompleteness
算法完202.3Algebras:5-Valuedand9-Valued
算法代数:5值和9值逻辑代数SymbolDD01XG0G1F0F1Meaning1/00/10/01/1X/X0/X1/XX/0X/1FailingMachine0101XXX01GoodMachine1001X01XXRoth’sAlgebraMuth’sAdditions2.3Algebras:5-Valuedand9-V212.3.1Higher-OrderAlgebras
高阶代数Representtwomachines,whicharesimulatedsimultaneouslybyacomputerprogram:Goodcircuitmachine(1stvalue)Badcircuitmachine(2ndvalue)Bettertorepresentbothinthealgebra:Needonly1passofATPGtosolvebothGoodmachinevaluesthatprecludebadmachinevaluesbecomeobvioussooner&viceversaNeededforcompleteATPG:Combinational:Multi-pathsensitization,RothAlgebraSequential:MuthAlgebra--goodandbadmachinesmayhavedifferentinitialvaluesduetofault2.3.1Higher-OrderAlgebras
高阶222.4TypesofAlgorithms
算法类型Exhaustive/穷举算法Random-PatternGeneration/随机码生成BooleanDifferenceSymbolicMethod/布尔差分符号方法PathSensitizationMethod/路径敏化方法BooleanSatisfiability/布尔可满足性2.4TypesofAlgorithms
算法类型E232.4.1Exhaustive
穷举算法Forn-inputcircuit,generateall2ninputpatternsInfeasible,unlesscircuitispartitionedintoconesoflogic,with15inputsPerformexhaustiveATPGforeachconeMissesfaultsthatrequirespecificactivationpatternsformultipleconestobetested
2.4.1Exhaustive
穷举算法Forn-in242.4.2Random-PatternGeneration
随机码生成FlowchartformethodUsetogettestsfor60-80%offaults,thenswitchtoD-algorithmorotherATPGforrest2.4.2Random-PatternGeneratio252.4.3BooleanDifferenceSymbolicMethod
布尔差分符号方法g=G(X1,X2,…,Xn)forthefaultsitefj=Fj(g,X1,X2,…,Xn)1j
mXi=0or1for1i
n
2.4.3BooleanDifferenceSymbo26Shannon’sExpansionTheorem:
F(X1,X2,…,Xn)=X2
F(X1,1,…,Xn)+X2
F(X1,0,…,Xn)BooleanDifference(partialderivative):
FjgFaultDetectionRequirements:
G(X1,X2,…,Xn)=1FjgBooleanDifference(Sellers,Hsiao,Bearnson)=Fj(1,X1,X2,…,Xn)Fj(0,X1,…,Xn)=Fj(1,X1,X2,…,Xn)Fj(0,X1,…,Xn)=1
Shannon’sExpansionTheorem:272.4.4PathSensitizationMethod
路径敏化方法FaultSensitization/故障敏化FaultPropagation/故障传播LineJustification/线验证2.4.4PathSensitizationMetho2CircuitExample
电路实例Trypathf–h–k–L
blockedat
j,sincethereisnowaytojustifythe1on
i10DD111DDDCircuitExample
电路实例Tr2CircuitExample(Cont.)
电路实例(续)Trysimultaneouspathsf–h–k–Land
g–i–j–k–LblockedatkbecauseD-frontier(chainofDorD)disappears1DDDDD1CircuitExample(Cont.30CircuitExample(Cont.)
电路实例(续)Finaltry:path
g–i–j–k–L–testfound!0DDD1DD10CircuitExample(Cont.312.4.5BooleanSatisfiability
布尔可满足性2SAT:xixj+xjxk+xlxm…=0
xpxy+xrxs+xtxu…=03SAT:xixjxk+xjxkxl+xlxmxn…=0
xpxy+xrxsxt+xtxuxv…=0......2.4.5BooleanSatisfiability
3SatisfiabilityExampleforANDGateS
akbkck=0(non-tautology)or
P(ak+bk+ck)=1(satisfiability)ANDgatesignalrelationships:Cube:Ifa=0,thenz=0azIfb=0,thenz=0bzIfz=1,thena=1ANDb=1zabIfa=1ANDb=1,thenz=1abzSumtoget:az+bz+abz=0(thirdrelationshipisredundantwith1sttwo)SatisfiabilityExample3Pseudo-BooleanandBooleanFalseFunctionsPseudo-Booleanfunction:useordinary+-integerarithmeticoperatorsComplementationofxrepresentedby1–xFpseudo—Bool
=2z+ab–az–bz–abz=0Energyfunctionrepresentation:letanyvariablebeintherange(0,1)inpseudo-BooleanfunctionBooleanfalseexpression:
fAND
(a,b,z)=z(ab)=az+bz+abz
Pseudo-BooleanandBoo3ANDGateImplicationGraph
隐含图ReallyefficientEachvariablehas2nodes,oneforeachliteralIf…thenclauserepresentedbyedgefromifliteraltothenliteralTransformintotransitiveclosuregraph
Whennodetrue,allreachablestatesaretrueANDingoperatorusedfor3SATrelations
ANDGateImplicationG352.5ComputationalComplexity
计算复杂性IbarraandSahnianalysis–NP-Complete(nopolynomialexpressionfoundforcomputetime,presumedtobeexponential)Worstcase:
no_piinputs,2no_piinputcombinations
no_ffflip-flops,4no_ffinitialflip-flopstates(goodmachine0or1badmachine0or1)worktoforwardorreversesimulatenlogicgatesa
nComplexity:O(nx2no_pix4no_ff)
2.5ComputationalComplexity
计362.6HistoryofAlgorithmSpeedups
算法历史AlgorithmD-ALGPODEMFANTOPSSOCRATESWaicukauskietal.ESTTRANRecursivelearningTafertshoferetal.Est.speedupoverD-ALG(normalizedtoD-ALGtimeTPGSystem2189ATPGSystem8765ATPGSystem3005ATPGSystem48525057Year1966198119831987198819901991199319951997
2.6HistoryofAlgorithmSpeed372.7FaultCoverageandEfficiency
故障覆盖率和效率Faultcoverage=Faultefficiency
#ofdetectedfaultsTotal#faults#ofdetectedfaultsTotal#faults--#undetectablefaults=2.7FaultCoverageandEfficie382.8TestGenerationSystems
测试生成系统CircuitDescriptionTestPatternsUndetectedFaultsRedundantFaultsAbortedFaultsBacktrackDistributionFaultListCompacterSOCRATESWithfaultsimulator2.8TestGenerationSystems
测试392.9TestCompaction
测试压缩FaultsimulatetestpatternsinreverseorderofgenerationATPGpatternsgofirstRandomly-generatedpatternsgolast(becausetheymayhavelesscoverage)Whencoveragereaches100%,dropremainingpatterns(whicharetheuselessrandomones)Significantlyshortenstestsequence–economiccostreduction2.9TestCompaction
测试压缩Fault402.9.1StaticandDynamicCompaction
静态和动态压缩StaticcompactionATPGshouldleaveunassignedinputsasXTwopatternscompatible–ifnoconflictingvaluesforanyPICombinetwoteststaandtbintoonetesttab
=
tatbusingD-intersectionDetectsunionoffaultsdetectedbyta&tbDynamiccompactionProcesseverypartially-doneATPGvectorimmediatelyAssign0or1toPIstotestadditionalfaults
2.9.1StaticandDynamicCompa412.9.2CompactionExample
压缩实例t1
=01Xt2=0X1t3=0X0t4=X01Combine
t1andt3,then
t2andt4Obtain:t13
=010t24=001TestLengthshortenedfrom4to22.9.2CompactionExample
压缩实例t423SequentialCircuitsATPG
时序电路ATPGAsequentialcircuithasmemoryinadditiontocombinationallogic.Testforafaultinasequentialcircuitisasequenceofvectors,whichInitializesthecircuittoaknownstateActivatesthefault,andPropagatesthefaulteffecttoaprimaryoutputMethodsofsequentialcircuitATPGTime-frameexpansionmethodsSimulation-basedmethods3SequentialCircuitsATPG
时序电433.1Time-FramesExpansionIfthetestsequenceforasinglestuck-atfaultcontainsnvectors,ReplicatecombinationallogicblockntimesPlacefaultineachblockGenerateatestforthemultiplestuck-atfaultusingcombinationalATPGwith9-valuedlogicComb.blockFaultTime-frame0Time-frame-1Time-frame-n+1UnknownorgivenInit.stateVector0Vector-1Vector-n+1PO0PO-1PO-n+1StatevariablesNextstate3.1Time-FramesExpansionIfth443.1.1ExampleforLogicSystems
实例FF2
FF1ABs-a-13.1.1ExampleforLogicSystem4Five-ValuedLogic(Roth)
0,1,D,D,X
A
BXXX0s-a-1DA
BXXX0s-a-1DFF1FF1FF2FF2DDTime-frame-1Time-frame0Five-ValuedLogic(Rot4Nine-ValuedLogic(Muth)
0,1,1/0,0/1,
1/X,0/X,X/0,X/1,XA
BXXX0s-a-10/1A
B0/X0/X0/1
Xs-a-1X/1
FF1FF1FF2FF20/1X/1Time-frame-1Time-frame0Nine-ValuedLogic(Mut473.1.2ImplementationofATPG
ATPG实现SelectaPOforfaultdetectionbasedondrivabilityanalysis.Placealogicvalue,1/0or0/1,dependingonfaulttypeandnumberofinversions.JustifytheoutputvaluefromPIs,consideringallnecessarypathsandaddingbackwardtime-frames.Ifjustificationisimpossible,thenusedrivabilitytoselectanotherPOandrepeatjustification.IftheprocedurefailsforallreachablePOs,thenthefaultisuntestable.If1/0or0/1cannotbejustifiedatanyPO,but1/Xor0/Xcanbejustified,thethefaultispotentiallydetectable.3.1.2ImplementationofATPG
A483.1.3ComplexityofATPG
计算复杂性Synchronouscircuit--Allflip-flopscontrolledbyclocks;PIandPOsynchronizedwithclock:Cycle-freecircuit–Nofeedbackamongflip-flops:Testgenerationforafaultneedsnomorethandseq+1time-frames,wheredseqisthesequentialdepth.Cycliccircuit–Containsfeedbackamongflip-flops:Mayneed9Nfftime-frames,whereNffisthenumberofflip-flops.Asynchronouscircuit–Highercomplexity!Time-Frame0Time-Framemax-1Time-Framemax-2Time-Frame-2Time-Frame-1S0S1S2S3Smaxmax=Numberofdistinctvectorswith9-valuedelements
=9Nff3.1.3ComplexityofATPG
计算复杂性4Cycle-FreeCircuits
无环电路Characterizedbyabsenceofcyclesamongflip-flopsandasequentialdepth,dseq.dseqisthemaximumnumberofflip-flopsonanypathbetweenPIandPO.Bothgoodandfaultycircuitsareinitializable.Testsequencelengthforafaultisboundedbydseq+.1Cycle-FreeCircuits
无环50Cycle-FreeExample
无环电路实例F1F2F3Level=12F1F2F3Level=1233dseq=3s-graphCircuitAllfaultsaretestable.SeeExample.3.2Cycle-FreeExample
无环电5Cycliccircuit
循环电路
Cyclicstructure–Sequentialdepthisundefined.Circuitisnotinitializable.Notestscanbegeneratedforanystuck-atfault.Afterexpandingthecircuitto9Nff=81,orfewer,time-framesATPGprogramcallsanygiventargetfaultuntestable.Circuitcanonlybefunctionallytestedbymultipleobservations.Functionaltests,whensimulated,givenofaultcoverage.Cycliccircuit
循环电路Cy5CyclicCircuitExample
循环电路实例F1F2CNTZModulo-3counters-graphF1FCyclicCircuitExample5BenchmarkCircuitsCircuitPIPOFFGatesStructureSeq.depthTotalfaultsDetectedfaultsPotentiallydetectedfaultsUntestablefaultsAbandonedfaultsFaultcoverage(%)Faultefficiency(%)Max.sequencelengthTotaltestvectorsGentestCPUs(Sparc2)s1196141418529Cycle-free412421239
03099.8100.0
331310s1238141418508Cycle-free413551283
072094.7100.0
330815yclic--14861384
2267693.194.8
2452519941yclic--15061379
2309791.693.4
285591918BenchmarkCircuitsCirc5AsynchronousCircuit
异步电路Anasynchronouscircuitcontainsunclockedmemoryoftenrealizedbycombinationalfeedback.Almostimpossibletobuild,letalonetest,alargeasynchronouscircuit.Clockgenerators,signalsynchronizers,flip-flopsaretypicalasynchronouscircuits.Manylargesynchronoussystemscontainsmallportionsoflocalizedasynchronouscircuitry.SequentialcircuitATPGshouldbeabletogeneratetestsforcircuitswithlimitedasynchronousparts,evenifitdoesnotdetectfaultsinthoseparts.AsynchronousCircuit
异5AsynchronousModel
异步电路模型ClockedFlip-flopsFeedbackdelaysSynchronousPIsSynchronousPOsSystemClock,CKFastmodelClock,FMCKCKCKFeedback-freeCombinationalLogicCCombinationalFeedbackPaths:FeedbacksetModelingcircuitisShowninorange.PPOPPIAsynchronousModel
异步电5Time-FrameExpansion
异步电路时帧扩展Time-framekTime-frame-k+1Time-frame-k-1CFMCKCFMCKCFMCKCCKAsynchronousfeedbackstabilizationPIPOFeedbacksetPPIPPOFeedbacksetVectorkTime-FrameExpansion
异573.2simulation-basedmethods
基于模拟的方法Difficultieswithtime-framemethod:LonginitializationsequenceImpossibleinitializationwiththree-valuedlogicCircuitmodelinglimitationsTimingproblems–testscancauseraces/hazardsHighcomplexityInadequacyforasynchronouscircuitsAdvantagesofsimulation-basedmethodsAdvancedfaultsimulationtechnologyAccuratesimulationmodelexistsforverificationVarietyoftests–functional,heuristic,randomUsedsinceearly1960s3.2simulation-basedmethods
基583.2.1UsingFaultSimulator
使用故障模拟器FaultsimulatorVectorsource:Functional(test-bench),Heuristic(walking1,etc.),Weightedrandom,randomFaultlistTestvectorsNewfaultsdetected?Stoppingcriteria(faultcoverage,CPUtimelimit,etc.)satisfied?StopUpdatefaultlistAppendvectorsRestorecircuitstateGeneratenewtrialvectorsYesNoYesNoTrialvectors3.2.1UsingFaultSimulator
使用593.2.2ContestAConcurrenttestgeneratorforsequentialcircuittesting(Contest).Searchfortestsisguidedbycost-functions.Three-phasetestgeneration:Initialization–nofaultstargeted;cost-functioncomputedbytrue-valuesimulator.Concurrentphase–allfaultstargeted;costfunctioncomputedbyaconcurrentfaultsimulator.Singlefaultphase–faultstargetedoneatatime;costfunctioncomputedbytrue-valuesimulationanddynamictestabilityanalysis.Ref.:Agrawal,etal.,IEEE-TCAD,19ContestAConcurrenttest60ContestResult:s537835PIs,49POs,179FFs,4,603faults.Synchronous,singleclock.Contest75.5%01,72257,5323min.*9min.*Randomvectors67.6%057,532--09min.Gentest**72.6%122490--4.5hrs.10sec.FaultcoverageUntestablefaultsTestvectorsTrialvectorsusedTestgen.CPUtime#Faultsim.CPUtime##SunUltraII,200MHzCPU*Estimatedtime**Time-frameexpansion(highercoveragepossiblewithmoreCPUtime)ContestResult:s53783613.2.3GeneticAlgorithms(GAs)
遗传算法Theoryofevolutionbynaturalselection(Darwin,1809-82.)C.R.Darwin,OntheOriginofSpeciesbyMeansofNaturalSelection,London:JohnMurray,1859.J.H.Holland,AdaptationinNaturalandArtificialSystems,AnnArbor:UniversityofMichiganPress,1975.D.E.Goldberg,GeneticAlgorithmsinSearch,Optimization,andMachineLearning,Reading,Massachusetts:Addison-Wesley,1989.P.MazumderandE.M.Rudnick,GeneticAlgorithmsforVLSIDesign,LayoutandTestAutomation,UpperSaddleRiver,NewJersey,PrenticeHallPTR,1999.BasicIdea:Populationimproveswitheachgeneration.PopulationFitnesscriteriaRegenerationrules3.2.3GeneticAlgorithms(GAs)6GAsforTestGenerationPopulation:Asetofinputvectorsorvectorsequences.Fitnessfunction:Quantitativemeasuresofpopulationsucceedingintaskslikeinitializationandfaultdetection(reciprocaltocostfunctions.)Regenerationrules(heuristics):Memberswithhigherfitnessfunctionvaluesareselectedtoproducenewmembersviatransformationslikemutationandcrossover.GAsforTestGeneratio6StrategateResultss1423s5378s35932Totalfaults1,5154,60339,094Detectedfaults1,4143,63935,100Faultcoverage93.3%79.1%89.8%Testvectors3,94311,571257CPUtime1.3hrs.37.8hrs.10.2hrs.HPJ200256MBRef.:M.S.Hsiao,E.M.RudnickandJ.H.Patel,“DynamicStateTraversalforSequentialCircuitTestGeneration,”ACMTrans.
onDesignAutomationofElectronicSystems(TODAES),vol.5,no.3,July200.2StrategateResults643.2.4SpectralMethods
光谱方法ReplacewithcompactedvectorsTestvectors(initiallyrandomvectors)Faultsimulation-basedvectorcompactionStoppingcriteria(coverage,CPUtime,vectors)satisfied?Extractspectralcharacteristics(e.g.,Hadamardcoefficients)andgeneratevectorsStopAppendnewvectorsCompactedvectorsNoYes3.2.4SpectralMethods
光谱方法Rep6SpectralInformation
光谱信息Randominputsresemblenoiseandhavelowcoverageoffaults.Sequentialcircuittestsarenotrandom:SomePIsarecorrelated.SomePIsareperiodic.Correlationandperiodicitycanberepresentedbyspectralcomponents,e.g.,Hadamardcoefficients.Vectorcompactionremovesunnecessaryvectorswithoutreducingfaultcoverage:Reversesimulationforcombinationalcircuits(Example5.5.)Vectorrestorationforsequentialcircuits.Compactionissimilartonoiseremoval(filtering)andenhancesspectralcharacteristics.SpectralInformation
光6SpectralMethod:s5378Simulation-basedmethodsTime-frameexpansionSpectral-method*StrategateContestHitecGentestFaultcov.79.14%79.06%75.54%70.19%72.58%Vectors73411,5711,722912490CPUtime43.5min.37.8hrs.12.0min.18.4hrs.5.0hrs.PlatformUltraSparc10UltraSparc1UltraIIHP9000/J200UltraII*A.Giani,S.Sheng,M.S.HsiaoandV.D.Agrawal,“EfficientSpectralTechniquesforSequentialATPG,”Proc.IEEEDesignandTestinEurope(DATE)Conf.,March200.2SpectralMethod:s5378674Summary
小结Testabilityapproximatelymeasures:Difficultyofsettingcircuitlinesto0or1DifficultyofobservinginternalcircuitlinesUses:AnalysisofdifficultyoftestinginternalcircuitpartsRedesigncircuithardwareoraddspecialtesthardwarewheremeasuresshowbadcontrollabilityorobservabilityGuidanceforalgorithmscomputingtestpatterns–avoidusinghard-to-controllinesEstimationoffaultcoverage–3-5%errorEstimationoftestvectorlength4Summary
小结Testabilityapprox684Summary(Cont.)
小结(续)TestBridging,Stuck-at,Delay,&TransistorFaultsMusthandlenon-Booleantri-statedevices,buses,&bidirectionaldevices(passtransistors)HierarchicalATPG--9Timesspeedup(Min)Handlesadders,comparators,MUXesComputepropagationD-cubesPropagateandjustifyfaulteffectswiththeseUseinternallogicdescriptionforinternalfaultsResultsof40yearsresearch–mature–methods:PathsensitizationSimulation-basedBooleansatisfiabilityandneuralnetworks4Summary(Cont.)
小结(续)TestB694Summary(Cont.)
小结(续)CombinationalATPGalgorithmsareextended:Time-frameexpansionunrollstimeascombinationalarrayNine-valuedlogicsystemJustificationviabackwardtimeCycle-freecircuits:Requireatmostdseqtime-framesAlwaysinitializableCycliccircuits:Mayneed9Nfftime-framesCircuitmustbeinitializablePartialscancanmakecircuitcycle-free(Chapter14)Asynchronouscircuits:HighcomplexityLowcoverageandunreliabletestsSimulation-basedmethodsaremoreuseful(Section8.3)4Summary(Cont.)
小结(续)Combin704Summary(Cont.)
小结(续)FaultsimulationisaneffectivetoolforsequentialcircuitATPG.Testscanbege
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《福楼拜家的星期天》教学反思
- 卖矿中介合同范例
- 出售进口吊车合同范本
- 井盖经销合同范本
- 单纯汽车租赁合同范本
- 防水维修合同范本 标准
- 切石墙抹灰合同范本
- 区域加盟代理合同范本
- 劳务外包员工合同范本
- 农机养护维修合同范本
- 第二章 疾病概论课件
- 高压发电机细分市场深度研究报告
- 新闻采访与写作课件第十五章其他报道样式的写作
- 小学语文单元整体作业设计案例(五年级下册第六单元)
- 解读 国家数据局首批20个“数据要素x”典型案例-31正式版-WN8
- 《跨境直播运营》课件-跨境直播的意义和要素
- 3 学会反思(教学设计)部编版道德与法治六年级下册
- 第一单元 歌唱祖国-《 中华人民共和国国歌》课件 2023-2024学年人音版初中音乐七年级上册
- 2024-2030年中国肾性贫血疗法行业市场发展趋势与前景展望战略分析报告
- DL∕T 1281-2013 燃煤电厂固体废物贮存处置场污染控制技术规范
- 办公家具采购项目质量保证售后服务承诺书
评论
0/150
提交评论