




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把抛物线向右平移个单位,再向上平移个单位,得到的抛物线是()A. B. C. D.2.如图,正方形ABCD中,对角线AC,BD交于点O,点M,N分别为OB,OC的中点,则cos∠OMN的值为()A. B. C. D.13.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形4.抛物线y=3x2向右平移一个单位得到的抛物线是()A.y=3x2+1 B.y=3x2﹣1 C.y=3(x+1)2 D.y=3(x﹣1)25.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣26.已知,如图,E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点)的坐标()A.(-2,1) B.(2,-1) C.(2,-1)或(-2,-1) D.(-2,1)或(2,-1)7.如图,点的坐标为,点,分别在轴,轴的正半轴上运动,且,下列结论:①②当时四边形是正方形③四边形的面积和周长都是定值④连接,,则,其中正确的有()A.①② B.①②③ C.①②④ D.①②③④8.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.129.已知点A(x1,y1),B(x2,y2)在双曲线y=上,如果x1<x2,而且x1•x2>0,则以下不等式一定成立的是()A.y1+y2>0 B.y1﹣y2>0 C.y1•y2<0 D.<010.在反比例函数的图象在某象限内,随着的增大而增大,则的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)12.如图,是的切线,为切点,,,点是上的一个动点,连结并延长,交的延长线于,则的最大值为_________
13.已知关于的一元二次方程的一个根是2,则的值是:______.14.如图,四边形ABCD、AEFG都是正方形,且∠BAE=45°,连接BE并延长交DG于点H,若AB=4,AE=,则线段BH的长是_____.15.方程(x+5)2=4的两个根分别为_____.16.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们归纳出为“杠杆原理”.已知,手压压水井的阻力和阻力臂分别是90和0.3,则动力(单位:)与动力臂(单位:)之间的函数解析式是__________.17.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm1.18.如图,在⊙O内有折线DABC,点B,C在⊙O上,DA过圆心O,其中OA=8,AB=12,∠A=∠B=60°,则BC=_____.三、解答题(共66分)19.(10分)如图,在△ABC中,AB=AC,点D为BC的中点,经过AD两点的圆分别与AB,AC交于点E、F,连接DE,DF.(1)求证:DE=DF;(2)求证:以线段BE+CF,BD,DC为边围成的三角形与△ABC相似,20.(6分)已知锐角△ABC内接于⊙O,OD⊥BC于点D.(1)若∠BAC=60°,⊙O的半径为4,求BC的长;(2)请用无刻度直尺画出△ABC的角平分线AM.(不写作法,保留作图痕迹)21.(6分)在一个不透明的袋子中装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子中随机摸出1个乒乓球,记下标号后放回,再从袋子中随机摸出1个乒乓球记下标号,用画树状图(或列表)的方法,求两次摸出的乒乓球标号之和是偶数的概率.22.(8分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.23.(8分)(问题情境)(1)古希腊著名数学家欧几里得在《几何原本》提出了射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项.射影定理是数学图形计算的重要定理.其符号语言是:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则:(1)AC²=AB·AD;(2)BC²=AB·BD;(3)CD²=AD·BD;请你证明定理中的结论(1)AC²=AB·AD.(结论运用)(2)如图2,正方形ABCD的边长为3,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,①求证:△BOF∽△BED;②若,求OF的长.24.(8分)解方程:4x2﹣2x﹣1=1.25.(10分)综合与探究如图1,平面直角坐标系中,直线分别与轴、轴交于点,.双曲线与直线交于点.(1)求的值;(2)在图1中以线段为边作矩形,使顶点在第一象限、顶点在轴负半轴上.线段交轴于点.直接写出点,,的坐标;(3)如图2,在(2)题的条件下,已知点是双曲线上的一个动点,过点作轴的平行线分别交线段,于点,.请从下列,两组题中任选一组题作答.我选择组题.A.①当四边形的面积为时,求点的坐标;②在①的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.B.①当四边形成为菱形时,求点的坐标;②在①的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.26.(10分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据抛物线平移的规律:左加右减,上加下减,即可得解.【详解】由已知,得经过平移的抛物线是故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.2、B【详解】∵正方形对角线相等且互相垂直平分∴△OBC是等腰直角三角形,∵点M,N分别为OB,OC的中点,∴MN//BC∴△OMN是等腰直角三角形,∴∠OMN=45°∴cos∠OMN=3、C【解析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.4、D【解析】先确定抛物线y=3x1的顶点坐标为(0,0),再利用点平移的坐标变换规律得到点(0,0)平移后对应点的坐标为(1,0),然后根据顶点式写出平移后的抛物线的解析式.【详解】y=3x1的顶点坐标为(0,0),把点(0,0)右平移一个单位所得对应点的坐标为(1,0),所以平移后的抛物线解析式为y=3(x﹣1)1.故选D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5、D【分析】把函数解析式整理成顶点式的形式,然后根据二次函数的最值问题解答.【详解】解:∵y=x2−4x+2=(x−2)2−2,∴在−1≤x≤3的取值范围内,当x=2时,有最小值−2,当x=−1时,有最大值为y=9−2=1.故选D.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式是解题的关键.6、D【分析】由E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,根据位似图形的性质,即可求得点E的对应点的坐标.【详解】解:∵E(-4,2),以O为位似中心,按比例尺1:2把△EFO缩小,∴点E的对应点的坐标为:(-2,1)或(2,-1).故选D.【点睛】本题考查位似变换;坐标与图形性质,利用数形结合思想解题是关键.7、A【分析】过P作PM⊥y轴于M,PN⊥x轴于N,易得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证得△APM≌△BPN,可对①进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当OA=OB时,OA=OB=1,然后可对②作出判断,由△APM≌△BPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对④作出判断.【详解】过P作PM⊥y轴于M,PN⊥x轴于N,
∵P(1,1),
∴PN=PM=1.
∵x轴⊥y轴,
∴∠MON=∠PNO=∠PMO=90°,则四边形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPN=∠APB=90°,
∴∠MPA=∠NPB.
在△MPA≌△NPB中,,
∴△MPA≌△NPB,
∴PA=PB,故①正确.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
当OA=OB,即OA=OB=1时,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故②正确.
∵△MPA≌△NPB,
∴.
∵OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误.
∵∠AOB+∠APB=180°,
∴点A、O、B、P共圆,且AB为直径,所以AB≥OP,故④错误.
故选:A.【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,圆周角定理,关键是推出AM=BN和推出OA+OB=OM+ON8、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.9、B【分析】根据题意可得x1<x2,且x1、x2同号,根据反比例函数的图象与性质可得y1>y2,即可求解.【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而x1<x2,且x1、x2同号,所以y1>y2,即y1﹣y2>0,故选:B.【点睛】本题考查反比例函数的图象与性质,掌握反比例函数的图象与性质是解题的关键.10、C【分析】由于反比例函数的图象在某象限内随着的增大而增大,则满足,再解不等式求出的取值范围即可.【详解】∵反比例函数的图象在某象限内,随着的增大而增大∴解得:故选:C.【点睛】本题考查了反比例函数的图象和性质,熟练掌握图象在各象限的变化情况跟系数之间的关系是关键.二、填空题(每小题3分,共24分)11、>【分析】直接将(﹣,y2),(﹣2,y2)代入y=﹣,求出y2,y2即可.【详解】解:∵反比例函数y=﹣的图象上有两点(﹣,y2),(﹣2,y2),∴=4,y2=﹣=2.∵4>2,∴y2>y2.故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12、【分析】根据题意可知当ED与相切时,EC最大,再利用△ECD∽△EBA,找到对应边的关系即可求解.【详解】解:如图,当CD⊥DE于点D时EC最大.∵CD⊥DE,是的切线∴∠EDC=∠EAB=90°又∵∠E=∠E∴△ECD∽△EBA∴∴则∵,,∠EAB=90°∴CD=AC=1在Rt△ABE中利用勾股定理得即则∴可化为,解得或(舍去)综上所述,的最大值为.【点睛】本题考查了切线和相似的性质,能通过切线的性质找到符合要求的点,再能想到相似得到对应边的关系是解答此题的关键.13、1【分析】先将所求式子化成,再根据一元二次方程的根的定义得出一个a、b的等式,然后将其代入求解即可得.【详解】由题意,将代入方程得:整理得:,即将代入得:故答案为:1.【点睛】本题考查了一元二次方程的根的定义、代数式的化简求值,利用一元二次方程的根的定义得出是解题关键.14、【分析】连结GE交AD于点N,连结DE,由于∠BAE=45°,AF与EG互相垂直平分,且AF在AD上,由可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出,则,解着利用计算出HE,所以BH=BE+HE.【详解】解:连结GE交AD于点N,连结DE,如图,∵∠BAE=45°,∴AF与EG互相垂直平分,且AF在AD上,∵,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,;由题意可得:△ABE相当于逆时针旋转90°得到△AGD,∴,∵,∴,∴.故答案是:.【点睛】本题考查了正方形的性质,解题的关键是会运用勾股定理和等腰直角三角形的性质进行几何计算.15、x1=﹣7,x2=﹣3【分析】直接开平方法解一元二次方程即可.【详解】解:∵(x+5)2=4,∴x+5=±2,∴x=﹣3或x=﹣7,故答案为:x1=﹣7,x2=﹣3【点睛】本题主要考查一元二次方程的解法中的直接开平方法,要求理解直接开平方法的适用类型,以及能够针对不同类型的题选用合适的方法进行计算.16、【分析】直接利用阻力×阻力臂=动力×动力臂,进而代入已知数据即可得解.【详解】解:∵阻力×阻力臂=动力×动力臂,∴∴故答案为:.【点睛】本题考查的知识点是用待定系数法求反比例函数解析式,解此题的关键是要知道阻力×阻力臂=动力×动力臂.17、60π【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(cm1).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.18、1【分析】作OE⊥BC于E,连接OB,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长,设垂足为E,在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长,由垂径定理知BC=2BE即可得出答案.【详解】作OE⊥BC于E,连接OB.∵∠A=∠B=60°,∴∠ADB=60°,∴△ADB为等边三角形,∴BD=AD=AB=12,∵OA=8,∴OD=4,又∵∠ADB=60°,∴DE=OD=2,∴BE=12﹣2=10,由垂径定理得BC=2BE=1故答案为:1.【点睛】本题考查了圆中的弦长计算,熟练掌握垂径定理,作出辅助线构造直角三角形是解题的关键.三、解答题(共66分)19、(1)详见解析;(2)详见解析【分析】(1)连接AD,证明∠BAD=∠CAD即可得出,则结论得出;(2)在AE上截取EG=CF,连接DG,证明△GED≌△CFD,得出DG=CD,∠EGD=∠C,则可得出结论△DBG∽△ABC.【详解】(1)证明:连接AD,∵AB=AC,BD=DC,∴∠BAD=∠CAD,∴,∴DE=DF.(2)证明:在AE上截取EG=CF,连接DG,∵四边形AEDF内接于圆,∴∠DFC=∠DEG,∵DE=DF,∴△GED≌△CFD(SAS),∴DG=CD,∠EGD=∠C,∵AB=AC,∴∠B=∠C,∴△DBG∽△ABC,即以线段BE+CF,BD,DC为边围成的三角形与△ABC相似.【点睛】本题考查了圆的综合问题,熟练掌握圆的内接四边形性质与相似三角形的判定是解题的关键.20、(1);(2)见解析【分析】(1)连接OB、OC,得到,然后根据垂径定理即可求解BC的长;(2)延长OD交圆于E点,连接AE,根据垂径定理得到,即,AE即为所求.【详解】(1)连接OB、OC,∴∵OD⊥BC∴BD=CD,且∵OB=4∴0D=2,BD=∴BC=故答案为;(2)如图所示,延长OD交⊙O于点E,连接AE交BC于点M,AM即为所求根据垂径定理得到,即,所以AE为的角平分线.【点睛】本题考查了垂径定理,同弧所对圆周角是圆心角的一半,熟练掌握圆部分的定理和相关性质是解决本题的关键.21、图形见解析,概率为【分析】根据题意列出树形图,再利用概率公式计算即可.【详解】根据题意,列表如下:共有9种结果,并且它们出现的可能性相等,符合题意的结果有5种,.【点睛】本题考查概率的计算,关键在于熟悉树形图和概率公式.22、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC为底的高是10,从而求得三角形ABC的面积【详解】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=1,∴S△ABC=×2×1=1.23、(1)见解析;(2)①见解析;②【分析】(1)证明△ACD∽△ABC,即可得证;
(2)①BC2=BO•BD,BC2=BF•BE,即BO•BD=BF•BE,即可求解;②在Rt△BCE中,BC=3,BE=,利用△BOF∽△BED,即可求解.【详解】解:(1)证明:如图1,∵CD⊥AB,
∴∠BDC=90°,
而∠A=∠A,∠ACB=90°,
∴△ACD∽△ABC,
∴AC:AB=AD:AC,
∴AC²=AB·AD;
(2)①证明:如图2,
∵四边形ABCD为正方形,
∴OC⊥BO,∠BCD=90°,
∴BC2=BO•BD,
∵CF⊥BE,
∴BC2=BF•BE,
∴BO•BD=BF•BE,
即,而∠OBF=∠EBD,
∴△BOF∽△BED;
②∵在Rt△BCE中,BC=3,BE=,∴CE=,∴DE=BC-CE=2;
在Rt△OBC中,OB=BC=,∵△BOF∽△BED,∴,即,∴OF=.【点睛】本题为三角形相似综合题,涉及到勾股定理运用、正方形基本知识等,难点在于找到相似三角形,此类题目通常难度较大.24、,【分析】根据一元二次方程的解法,配方法或者公式法解答即可.【详解】解:由题意可知:a=4,b=﹣2,c=﹣1,∴△=4+16=21,∴x=;【点睛】本题主要考查解一元二次方程,熟练掌握方程各种解法是解答关键.25、(1);(2),,;(3)A.①,②,,;B.①,②,,.【分析】(1)根据点在的图象上,求得的值,从而求得的值;(2)点在直线上易求得点的坐标,证得可求得点的坐标,证得即可求得点的坐标;(3)A.①作轴,利用平行四边的面积公式先求得点的纵坐标,从而求得答案;②分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;B.①作轴,根据菱形的性质结合相似三角形的性质先求得点的纵坐标,从而求得答案;②分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;【详解】(1)在的图象上,,,∴点的坐标是,在的图象上,∴,∴;(2)对于一次函数,当时,,∴点的坐标是,当时,,∴点的坐标是,∴,,在矩形中,,,∴,∴,,,,∴点的坐标是,矩形ABCD中,AB∥DG,∴∴点的坐标是,故点,,的坐标分别是:,,;(3)A:①过点作轴交轴于点,轴,,四边形为平行四边形,的纵坐标为,∴,∴,∴点的坐标是,②当时,如图1,点与点关于轴对称,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 63522-16:2025 EN-FR Electrical relays - Tests and measurements - Part 16: Soldering
- 2025年小学英语教学能力考试试卷及答案
- 2025年社会调查方法与实践考试试题及答案
- 2025年传感器技术基础测试题及答案
- 七级数学实数测试题及答案
- 《利率》试题及答案
- 门票代销合同协议书范本
- 市场营销案例评析(王天春)销售营销经管营销专业资料
- 2025年橡塑改性弹性体合作协议书
- 稽留流产护理
- 口腔科管理手册(参考)
- 租赁房屋委托书(8篇)
- 汉字就是这么来的
- 医院培训课件:《消毒隔离》
- 重症甲流护理查房
- 人工智能数学基础全套教学课件
- 尿毒症患者的护理健康评估
- 论社会系统研究方法及其运用读马克思主义与社会科学方法论有感
- 钢结构焊接技术的操作技巧与要点
- 健康喝水知识讲座
- 依莱达电动车使用说明书
评论
0/150
提交评论