人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件_第1页
人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件_第2页
人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件_第3页
人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件_第4页
人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12.2三角形全等的判定

第2课时用“SAS”判定三角形全等R·八年级上册12.2三角形全等的判定

第2课时用“SAS”判定三角形全学习目标【知识与技能】掌握证明三角形全等的“边角边”定理.【过程与方法】1.经历探索三角形全等条件的过程,培养学生观察,分析图形的能力及动手能力.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.【情感态度】通过对问题的共同探讨,培养学生的协作精神.【教学重点】应用“边角边”证明两个三角形全等,进而得出线段或角相等.【教学难点】指导学生分析问题,寻找判定三角形全等的条件.学习目标【知识与技能】掌握证明三角形全等的“边角边”定理.【新课导入上一节课,我们探究了三条边对应相等的两个三角形全等.如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?——这就是本节课我们要探讨的课题.新课导入上一节课,我们探究了三条边对应相等的两个三角形全等.推进新课问题1先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,C′A′=CA(即两边和它们的夹角分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?边角边的判定方法知识点1探究推进新课问题1先任意画出一个△ABC,再画一个△A′B′CA′

DE现象:两个三角形放在一起能完全重合.说明:这两个三角形全等.

画法:(1)画∠DA′E=∠A;(2)在射线A′D上截取

A′B′=AB,在射线

A′E上截取A′C′=AC;(3)连接B′C′.B′

C′

A′DE现象:两个三角形放在一起画法:B′几何语言:在△ABC和△A′B′C′中,∴

△ABC≌△A′B′C′(SAS).

归纳概括“SAS”判定方法:两边和它们的夹角分别相等的两个三角形全等(可简写成“边角边”或“SAS”).AB=A′B′,∠A=∠A′,AC=A′C′

,几何语言:∴△ABC≌△A′B′C′(SAS).练习1

下列图形中有没有全等三角形,并说明全等的理由.甲8cm9cm丙8cm9cm8cm9cm乙30°30°30°练习1下列图形中有没有全等三角形,并说明全等的理由.甲8甲8cm9cm丙8cm9cm8cm9cm乙30°30°30°图甲与图丙全等,依据就是“SAS”,而图乙中30°的角不是已知两边的夹角,所以不与另外两个三角形全等.甲8cm9cm丙8cm9cm8cm9cm乙30°练习2

①下列条件中,能用SAS判定△ABC≌△DEF的条件是()A.AB=DE,∠A=∠D,BC=EFB.AB=DE,∠B=∠E,BC=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AB=DFB练习2①下列条件中,能用SAS判定△ABC≌△DEF的条练习2

②已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出_____个.7练习2②已知△ABC中,AB=BC≠AC,作与△问题2某同学不小心把一块三角形的玻璃从两个顶点处打碎成两块(如图),现要到玻璃店去配一块完全一样的玻璃.请问如果只准带一块碎片,应该带哪一块去,能试着说明理由吗?“SAS”判定方法的应用知识点2问题2某同学不小心把一块三角形的玻璃从两个顶点处打碎成两块利用今天所学“边角边”知识,带黑色的那块.因为它完整地保留了两边及其夹角,一个三角形两条边的长度和夹角的大小确定了,这个三角形的形状、大小就确定下来了.利用今天所学“边角边”知识,带黑色的那块.因为它完整地保留了例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接ED,那么量出DE的长就是A,B的距离.为什么?ABCDE12例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取AC=DC(已知),∠1=∠2(对顶角相等),BC

=EC(已知)

,证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS).∴

AB

=DE(全等三角形的对应边相等).ABCDE12AC=DC(已知),证明:在△ABC和△DEC中,∴如图,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC和△ABD不全等.

问题3两边一角分别相等包括“两边夹角”和“两边及其中一边的对角”分别相等两种情况,前面已探索出“SAS”判定三角形全等的方法,那么由“SSA”的条件能判定两个三角形全等吗?ABCD探索“SSA”能否识别两三角形全等知识点3人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件如图,在△ABC和△ABD中,问题3两边一角画△ABC和△DEF,使∠B=∠E=30°,AB=DE=5cm,AC=DF=3cm.观察所得的两个三角形是否全等?两边和其中一边的对角对应相等这三个条件无法唯一确定三角形的形状,所以不能保证两个三角形全等.因此,△ABC和△DEF不一定全等.人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件画△ABC和△DEF,使∠B=∠E=30°,AB=练习1如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地.此时C,D到B的距离相等吗?为什么?相等,根据边角边定理,△BAD≌△BAC,∴BD=BC.人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件练习1如图,两车从南北方向的路段AB的A端出发,分别向东证明:∵BE=CF

,∴BE+EF=CF+EF,即BF=CE,又AB=DC,∠B=∠C,∴△ABF≌△DCE,∴∠A=∠D.练习2如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件证明:∵BE=CF,练习2如图,点E,F在BC上,练习3如图,在四边形ABCD中,AD∥BC,AD=BC,你能得出AB=CD吗?若能,试说明理由.ABCD人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件练习3如图,在四边形ABCD中,AD∥BC,AD=B解:连接AC.∵AD∥BC,∴∠DAC=∠BCA.在△ABC和△CDA中,∴△ABC≌△CDA(SAS).∴AB=CD.ABCD人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件解:连接AC.ABCD人教版八年级数学上册三角形全等的判定用随堂演练1.下列命题错误的是()A.周长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形不一定全等D.有两条边和一个角对应相等的两个三角形全等D基础巩固人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件随堂演练1.下列命题错误的是()D基础巩固人教版2.如图,AB=AC,若想用“SAS”判定△ABD≌△ACE,则需补充一个条件_________.AD=AE人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件2.如图,AB=AC,若想用“SAS”判定△ABD≌△A3.已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.综合应用人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件3.已知:如图AB=AC,AD=AE,∠BAC=∠证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DA4.小明做了一个如图所示的风筝,测得DE=DF,EH=FH,由此你能推出哪些正确结论?并说明理由.拓展延伸人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件4.小明做了一个如图所示的风筝,测得DE=DF,EH解:结论:(1)DH平分∠EDF和∠EHF.(2)DH垂直平分EF.理由:(1)在△EDH和△FDH中,∴△EDH≌△FDH(SSS).∴∠EDH=∠FDH,∠EHD=∠FHD.即DH平分∠EDF和∠EHF.人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件解:结论:(1)DH平分∠EDF和∠EHF.(2)DH垂直平解:理由:(2)由(1)知,在△EOD和△FOD中,∴△EOD≌△FOD(SAS).∴EO=OF,∠EOD=∠FOD=90°,∴DH垂直平分EF.人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件解:理由:(2)由(1)知,在△EOD和△FOD中,人教版八课堂小结A′

DEB′

C′

归纳概括“SAS”判定方法:两边和它们的夹角分别相等的两个三角形全等(可简写成“边角边”或“SAS”).人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件课堂小结A′DEB′C′归纳概括“SAS1.从课后习题中选取;2.完成练习册本课时的习题。课后作业人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件1.从课后习题中选取;课后作业人教版八年级数学上册三角形全等谢谢欣赏人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件谢谢欣赏人教版八年级数学上册三角形全等的判定用“SAS”判定12.2三角形全等的判定

第2课时用“SAS”判定三角形全等R·八年级上册12.2三角形全等的判定

第2课时用“SAS”判定三角形全学习目标【知识与技能】掌握证明三角形全等的“边角边”定理.【过程与方法】1.经历探索三角形全等条件的过程,培养学生观察,分析图形的能力及动手能力.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.【情感态度】通过对问题的共同探讨,培养学生的协作精神.【教学重点】应用“边角边”证明两个三角形全等,进而得出线段或角相等.【教学难点】指导学生分析问题,寻找判定三角形全等的条件.学习目标【知识与技能】掌握证明三角形全等的“边角边”定理.【新课导入上一节课,我们探究了三条边对应相等的两个三角形全等.如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?——这就是本节课我们要探讨的课题.新课导入上一节课,我们探究了三条边对应相等的两个三角形全等.推进新课问题1先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,C′A′=CA(即两边和它们的夹角分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?边角边的判定方法知识点1探究推进新课问题1先任意画出一个△ABC,再画一个△A′B′CA′

DE现象:两个三角形放在一起能完全重合.说明:这两个三角形全等.

画法:(1)画∠DA′E=∠A;(2)在射线A′D上截取

A′B′=AB,在射线

A′E上截取A′C′=AC;(3)连接B′C′.B′

C′

A′DE现象:两个三角形放在一起画法:B′几何语言:在△ABC和△A′B′C′中,∴

△ABC≌△A′B′C′(SAS).

归纳概括“SAS”判定方法:两边和它们的夹角分别相等的两个三角形全等(可简写成“边角边”或“SAS”).AB=A′B′,∠A=∠A′,AC=A′C′

,几何语言:∴△ABC≌△A′B′C′(SAS).练习1

下列图形中有没有全等三角形,并说明全等的理由.甲8cm9cm丙8cm9cm8cm9cm乙30°30°30°练习1下列图形中有没有全等三角形,并说明全等的理由.甲8甲8cm9cm丙8cm9cm8cm9cm乙30°30°30°图甲与图丙全等,依据就是“SAS”,而图乙中30°的角不是已知两边的夹角,所以不与另外两个三角形全等.甲8cm9cm丙8cm9cm8cm9cm乙30°练习2

①下列条件中,能用SAS判定△ABC≌△DEF的条件是()A.AB=DE,∠A=∠D,BC=EFB.AB=DE,∠B=∠E,BC=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AB=DFB练习2①下列条件中,能用SAS判定△ABC≌△DEF的条练习2

②已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出_____个.7练习2②已知△ABC中,AB=BC≠AC,作与△问题2某同学不小心把一块三角形的玻璃从两个顶点处打碎成两块(如图),现要到玻璃店去配一块完全一样的玻璃.请问如果只准带一块碎片,应该带哪一块去,能试着说明理由吗?“SAS”判定方法的应用知识点2问题2某同学不小心把一块三角形的玻璃从两个顶点处打碎成两块利用今天所学“边角边”知识,带黑色的那块.因为它完整地保留了两边及其夹角,一个三角形两条边的长度和夹角的大小确定了,这个三角形的形状、大小就确定下来了.利用今天所学“边角边”知识,带黑色的那块.因为它完整地保留了例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接ED,那么量出DE的长就是A,B的距离.为什么?ABCDE12例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取AC=DC(已知),∠1=∠2(对顶角相等),BC

=EC(已知)

,证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS).∴

AB

=DE(全等三角形的对应边相等).ABCDE12AC=DC(已知),证明:在△ABC和△DEC中,∴如图,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC和△ABD不全等.

问题3两边一角分别相等包括“两边夹角”和“两边及其中一边的对角”分别相等两种情况,前面已探索出“SAS”判定三角形全等的方法,那么由“SSA”的条件能判定两个三角形全等吗?ABCD探索“SSA”能否识别两三角形全等知识点3人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件如图,在△ABC和△ABD中,问题3两边一角画△ABC和△DEF,使∠B=∠E=30°,AB=DE=5cm,AC=DF=3cm.观察所得的两个三角形是否全等?两边和其中一边的对角对应相等这三个条件无法唯一确定三角形的形状,所以不能保证两个三角形全等.因此,△ABC和△DEF不一定全等.人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件画△ABC和△DEF,使∠B=∠E=30°,AB=练习1如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地.此时C,D到B的距离相等吗?为什么?相等,根据边角边定理,△BAD≌△BAC,∴BD=BC.人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件练习1如图,两车从南北方向的路段AB的A端出发,分别向东证明:∵BE=CF

,∴BE+EF=CF+EF,即BF=CE,又AB=DC,∠B=∠C,∴△ABF≌△DCE,∴∠A=∠D.练习2如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件证明:∵BE=CF,练习2如图,点E,F在BC上,练习3如图,在四边形ABCD中,AD∥BC,AD=BC,你能得出AB=CD吗?若能,试说明理由.ABCD人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件练习3如图,在四边形ABCD中,AD∥BC,AD=B解:连接AC.∵AD∥BC,∴∠DAC=∠BCA.在△ABC和△CDA中,∴△ABC≌△CDA(SAS).∴AB=CD.ABCD人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件解:连接AC.ABCD人教版八年级数学上册三角形全等的判定用随堂演练1.下列命题错误的是()A.周长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形不一定全等D.有两条边和一个角对应相等的两个三角形全等D基础巩固人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件随堂演练1.下列命题错误的是()D基础巩固人教版2.如图,AB=AC,若想用“SAS”判定△ABD≌△ACE,则需补充一个条件_________.AD=AE人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件2.如图,AB=AC,若想用“SAS”判定△ABD≌△A3.已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.综合应用人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件3.已知:如图AB=AC,AD=AE,∠BAC=∠证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).人教版八年级数学上册三角形全等的判定用“SAS”判定三角形全等课件人教版八年级数学上册三角形全等的判定用“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论