版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于一元线性回归方程第一页,共二十八页,2022年,8月28日第一章一元线性回归模型
以下设x为自变量(普通变量)Y为因变量(随机变量).现给定x的n
个值x1,…,xn,观察Y得到相应的n
个值y1,…,yn,(xi,yi)
i=1,2,…,n
称为样本点.
以(xi,yi)为坐标在平面直角坐标系中描点,所得到的这张图便称之为散点图.第二页,共二十八页,2022年,8月28日第三页,共二十八页,2022年,8月28日§1.1模型的建立及其假定条件例如:研究某市可支配收入X对人均消费支出Y的影响。建立如下理论回归模型:Yi=0
+1
Xi+εi其中:Yi——被解释变量;Xi——解释变量;εI——随机误差项;0,1—回归系数随机变量ε
i包含:回归模型中省略的变量;确定数学模型的误差;测量误差一、一元线性回归模型第四页,共二十八页,2022年,8月28日XY80100120140160180200220240260556579801021101201351371506070849310711513613714515265749095110120140140155175708094103116130144152165178758598108118135145157175180-88-113125140-160189185---115---162-191户数5657665765总支出32546244570767875068510439661211
假设调查了某社区所有居民,他们的人均可支配收入和消费支出数据如下:第五页,共二十八页,2022年,8月28日YX5510012014016080
描出散点图发现:随着收入的增加,消费“平均地说”也在增加,且Y的条件均值均落在一根正斜率的直线上。这条直线称为总体回归线。第六页,共二十八页,2022年,8月28日二、随机误差项εi的假定条件为了估计总体回归模型中的参数,需对随机误差项作出如下假定:假定1:零期望假定:E(εi)=0。假定2:同方差性假定:Var(εi)=
2。假定4:εi
服从正态分布,即εi
N(0,2)。假定3:无序列相关假定:Cov(εi,εj)=0,(i
j)。前三个条件称为G-M条件第七页,共二十八页,2022年,8月28日§1.2一元线性回归模型的参数估计普通最小二乘法(OrdinaryLeastSquares)OLS回归直线的性质OLSE的性质第八页,共二十八页,2022年,8月28日一、普通最小二乘法对于所研究的问题,通常真实的回归直线E(Yi|Xi)
=0
+1Xi
是观测不到的。可以通过收集样本来对真实的回归直线做出估计。
经验回归直线:
其中:为Yi的估计值(拟合值);为0
,1
的估计值;如果观测值到这条直线的纵向距离(真实值与估计值的偏差)用ei表示(称为残差),则经验回归模型为:(ei为εi的估计值)第九页,共二十八页,2022年,8月28日注意:分清4个式子的关系(4)经验(估计的)回归直线:(1)理论(真实的)回归模型:
(3)经验(估计的)回归模型:(2)理论(真实的)回归直线:第十页,共二十八页,2022年,8月28日对于参数的估计采用最小二乘估计法、最小二乘法的原则是以“残差平方和最小”确定直线位置(即估计参数)。(Q为残差平方和)Q===则通过Q最小确定这条直线,即确定,以为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:=
=0=
=0正规方程组即第十一页,共二十八页,2022年,8月28日根据以上两个偏导方程得以下正规方程(Normalequation):第十二页,共二十八页,2022年,8月28日若记则第十三页,共二十八页,2022年,8月28日二、OLS回归直线的性质(1)估计的回归直线过点.
(3)Yi
的拟合值的平均数等于其样本观测值的平均数.=
=
=
(2)第十四页,共二十八页,2022年,8月28日统计性质线性无偏性有效性2
的估计三、OLSE回归直线的性质第十五页,共二十八页,2022年,8月28日1、线性这里指都是Yi的线性函数。证明:=
=
令代入上式,得:同理可证:0也具有线性特性。=
第十六页,共二十八页,2022年,8月28日2、无偏性证明:======类似可证第十七页,共二十八页,2022年,8月28日3、有效性0
,1的OLS估计量的方差比其他线性无偏估计量的方差都小。第十八页,共二十八页,2022年,8月28日总体(随机误差项)真实方差2的无偏估计量:三、2的估计第十九页,共二十八页,2022年,8月28日§1.3回归方程的显著性检验一、回归参数的显著性检验(t检验)首先,提出原假设和备择假设:
H0:
H1:
其次,确定并计算统计量:
=如果不能拒绝H0:,认为X对Y没有显著影响。
如果拒绝H0:
,认为X对Y有显著影响。
同理,可对进行显著性检验。
第二十页,共二十八页,2022年,8月28日二、回归方程的显著性检验(F检验)
总离差平方和=回归平方和+残差平方和SST=SSR+SSEH0:
H1:
拒绝域F>Fα(1,n-2)第二十一页,共二十八页,2022年,8月28日三、用样本可决系数检验回归方程的拟合优度R2
=
R2=0时表明解释变量X与被解释变量Y之间不存在线性关系;R2=1时表明样本回归线与样本值重合,这种情况极少发生;一般情况下,R2越接近1表示拟合程度越好,X对Y的解释能力越强。第二十二页,共二十八页,2022年,8月28日四.
相关系数检验法1.提出原假设2.选择统计量3.对给定的显著性水平α,查临界值rα(n-2),
得否定域为|R|
>rα(n-2);第二十三页,共二十八页,2022年,8月28日§1.4
回归系数估计值的置信区间
-t/2(n-2)
0
t/2(n-2)
由于:由大括号内不等式表示的1的1-α的置信区间为:得:P{t/2
(n-2)
}=1-
同理,可,并求得的置信区间为:
第二十四页,共二十八页,2022年,8月28日§1.5一元线性回归方程的预测和控制点预测Yi区间预测
(1)单个值Yi的区间预测(2)均值E(Yi)的区间预测控制第二十五页,共二十八页,2022年,8月28日如果经过检验,样本回归方程的拟合优度好,且回归系数的估计值显著不为0,则可以用回归方程进行预测和控制。1、点预测
假设X0为解释变量的一个已知点,则带入样本回归方程即可得到Y0的估计值:2、区间预测
估计值是一个点预测值,它可以是(1)总体真值Y0的预测值;也可以是(2)总体回归线E(Y0
)的预测值。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度山林承包权联合经营合同4篇
- 2025年度智慧社区建设项目承包合同补充协议4篇
- 2025年度大型水电站PC构件吊装施工合同3篇
- 2025年度事业单位离职创业人员创业项目风险补偿基金合作协议4篇
- 2024版轮流抚养的离婚协议范本
- 2025年度生态园区车位租赁电子合同(含绿色出行)4篇
- 2025年度智能充电桩一体化解决方案购销合同范本4篇
- 2024绿化施工劳务分包合同范本
- 2025年度智能家居窗帘系统定制安装合同范本4篇
- 2024面粉公司社区团购代理销售合同范本3篇
- 谅解书(标准样本)
- 2022年浙江省事业编制招聘考试《计算机专业基础知识》真题试卷【1000题】
- 认养一头牛IPO上市招股书
- GB/T 3767-2016声学声压法测定噪声源声功率级和声能量级反射面上方近似自由场的工程法
- GB/T 23574-2009金属切削机床油雾浓度的测量方法
- 西班牙语构词.前后缀
- 动物生理学-全套课件(上)
- 河北省衡水市各县区乡镇行政村村庄村名居民村民委员会明细
- DB32-T 2665-2014机动车维修费用结算规范-(高清现行)
- 智能消防设备公司市场营销方案
- 最新6000亩海带筏式养殖投资建设项目可行性研究报告
评论
0/150
提交评论