版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为()A. B. C. D.2.已知为虚数单位,复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.设命题函数在上递增,命题在中,,下列为真命题的是()A. B. C. D.4.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()A. B. C. D.6.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.7.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.8.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为()A. B.C. D.9.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π10.已知平行于轴的直线分别交曲线于两点,则的最小值为()A. B. C. D.11.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2 B. C. D.12.如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)函数的定义域是____________.14.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____.15.已知单位向量的夹角为,则=_________.16.若函数(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)18.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)若函数有两个极值点,求证:.19.(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.20.(12分)已知,.(1)求函数的单调递增区间;(2)的三个内角、、所对边分别为、、,若且,求面积的取值范围.21.(12分)设,,其中.(1)当时,求的值;(2)对,证明:恒为定值.22.(10分)已知数列是等差数列,前项和为,且,.(1)求.(2)设,求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】
由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【题目详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选D.【答案点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.2.B【答案解析】
求出复数,得出其对应点的坐标,确定所在象限.【题目详解】由题意,对应点坐标为,在第二象限.故选:B.【答案点睛】本题考查复数的几何意义,考查复数的除法运算,属于基础题.3.C【答案解析】
命题:函数在上单调递减,即可判断出真假.命题:在中,利用余弦函数单调性判断出真假.【题目详解】解:命题:函数,所以,当时,,即函数在上单调递减,因此是假命题.命题:在中,在上单调递减,所以,是真命题.则下列命题为真命题的是.故选:C.【答案点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.B【答案解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【题目详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【答案点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.5.D【答案解析】
设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【题目详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【答案点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.6.B【答案解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【题目详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【答案点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.7.B【答案解析】
设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【题目详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【答案点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.8.B【答案解析】
利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.【题目详解】如图,,设为的中点,为的中点,由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,,;在中,,;在中,,,.故选:B【答案点睛】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.9.C【答案解析】
两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.10.A【答案解析】
设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.【题目详解】解:设直线为,则,,而满足,那么设,则,函数在上单调递减,在上单调递增,所以故选:.【答案点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.11.C【答案解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.【题目详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【答案点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.12.C【答案解析】
分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.【题目详解】由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.设.则.故异面直线EF与BD所成角的余弦值为.故选:C【答案点睛】本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
要使函数有意义,则,即,解得,故函数的定义域是.14.【答案解析】
两函数图象上存在关于轴对称的点的等价命题是方程在区间上有解,化简方程在区间上有解,构造函数,求导,求出单调区间,利用函数性质得解.【题目详解】解:根据题意,若函数与的图象上存在关于轴对称的点,则方程在区间上有解,即方程在区间上有解,设函数,其导数,又由,可得:当时,为减函数,当时,为增函数,故函数有最小值,又由;比较可得:,故函数有最大值,故函数在区间上的值域为;若方程在区间上有解,必有,则有,即的取值范围是;故答案为:;【答案点睛】本题利用导数研究函数在某区间上最值求参数的问题,函数零点问题的拓展.由于函数的零点就是方程的根,在研究方程的有关问题时,可以将方程问题转化为函数问题解决.此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.15.【答案解析】
因为单位向量的夹角为,所以,所以==.16.(1,)【答案解析】
在定义域[m,n]上的值域是[m2,n2],等价转化为与的图像在(1,)上恰有两个交点,考虑相切状态可求a的取值范围.【题目详解】由题意知:与的图像在(1,)上恰有两个交点考查临界情形:与切于,.故答案为:.【答案点睛】本题主要考查导数的几何意义,把已知条件进行等价转化是求解的关键,侧重考查数学抽象的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)分布列见解析;(2)406.【答案解析】
(1)计算个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为,得到分布列.(2)计算,代入数据计算比较大小得到答案.【题目详解】(1)设每个人的血呈阴性反应的概率为,则.所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为.依题意可知,,所以的分布列为:(2)方案②中.结合(1)知每个人的平均化验次数为:时,,此时1000人需要化验的总次数为690次,时,,此时1000人需要化验的总次数为604次,时,,此时1000人需要化验的次数总为594次,即时化验次数最多,时次数居中,时化验次数最少,而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①,当时化验次数最多可以平均减少次.【答案点睛】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力.18.(Ⅰ)见解析(Ⅱ)见解析【答案解析】
(Ⅰ)求导得到,讨论,,三种情况得到单调区间.(Ⅱ)设,要证,即证,,设,根据函数单调性得到证明.【题目详解】(Ⅰ),令,,(1)当,即时,,,在上单调递增;(2)当,即时,设的两根为(),,①若,,时,,所以在和上单调递增,时,,所以在上单调递减,②若,,时,,所以在上单调递减,时,,所以在上单调递增.综上,当时,在上单调递增;当时,在和上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(Ⅱ)不妨设,要证,即证,即证,由(Ⅰ)可知,,,可得,,所以有,令,,所以在单调递增,所以,因为,所以,所以.【答案点睛】本题考查了函数单调性,证明不等式,意在考查学生的分类讨论能力和计算能力.19.(1),(2)证明见解析【答案解析】
(1)利用首项和公差构成方程组,从而求解出的通项公式;由的通项公式求解出的表达式,根据以及,求解出的通项公式;(2)利用错位相减法求解出的前项和,根据不等关系证明即可.【题目详解】(1)设首项为,公差为.由题意,得,解得,∴,∴,∴当时,∴,.当时,满足上式.∴(2),令数列的前项和为.两式相减得∴恒成立,得证.【答案点睛】本题考查等差数列、等比数列的综合应用,难度一般.(1)当用求解的通项公式时,一定要注意验证是否成立;(2)当一个数列符合等差乘以等比的形式,优先考虑采用错位相减法进行求和,同时注意对于错位的理解.20.(1);(2).【答案解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可求得函数的单调递增区间;(2)由求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自由教练协议书(2篇)
- 购买玉石的消费合同(2篇)
- 南京航空航天大学《电子商务案例分析含实践》2023-2024学年第一学期期末试卷
- 南京航空航天大学《测试技术》2021-2022学年第一学期期末试卷
- 南京工业大学浦江学院《数媒工作坊-4》2022-2023学年第一学期期末试卷
- 【初中化学】水资源及其利用第1课时课件+2024-2025学年化学人教版九年级上册
- 反证法说课稿
- 《纸的发明》说课稿
- 《学会尊重》说课稿
- 《桃花源记》说课稿9
- 快手2025CNY《寨子里的歌晚》招商项目方案
- 2023年唐山银行招聘考试真题
- 《小学低年级语文说话能力培养的研究》课题实施方案
- 大型机械运输服务方案
- 2024年公司工会工作计划模版(三篇)
- 9.1增强安全意识课件-2024-2025学年统编版道德与法治七年级上册
- 榆能集团笔试考什么
- 应用英语智慧树知到答案2024年陕西交通职业技术学院
- 光伏组件回收再利用建设项目可行性研究报告写作模板-拿地申报
- 水电站可行性研究阶段勘探工作施工组织设计
- 2024年高考英语考试易错点:名词性从句(4大陷阱)(解析版)
评论
0/150
提交评论