湖南省邵阳市崀山培英学校2022-2023学年数学高一上期末复习检测试题含解析_第1页
湖南省邵阳市崀山培英学校2022-2023学年数学高一上期末复习检测试题含解析_第2页
湖南省邵阳市崀山培英学校2022-2023学年数学高一上期末复习检测试题含解析_第3页
湖南省邵阳市崀山培英学校2022-2023学年数学高一上期末复习检测试题含解析_第4页
湖南省邵阳市崀山培英学校2022-2023学年数学高一上期末复习检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.设当时,函数取得最大值,则()A. B.C. D.2.命题“,”的否定为()A., B.,C., D.,3.下列各式正确是A. B.C. D.4.设集合,.若,则()A. B.C. D.5.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.6.下列四组函数中,定义域相同的一组是()A.和 B.和C.和 D.和7.化简A. B.C.1 D.8.已知幂函数是偶函数,则函数恒过定点A. B.C. D.9.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数10.已知一个几何体的三视图如图所示,其中俯视图为半圆画,则该几何体的体积为()A B.C. D.11.已知函数表示为设,的值域为,则()A., B.,C., D.,12.若sinx<0,且sin(cosx)>0,则角是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角二、填空题(本大题共4小题,共20分)13.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为____14.空间两点与的距离是___________.15.定义在上的函数满足则________.16.设a>0且a≠1,函数fx三、解答题(本大题共6小题,共70分)17.已知二次函数的图象关于直线对称,且关于的方程有两个相等的实数根.(1)的值域;(2)若函数且在上有最小值,最大值,求的值.18.求证:角为第二象限角的充要条件是19.记函数的定义域为集合,函数的定义域为集合(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围20.如图,在长方体中,,,是与的交点.求证:(1)平面(2)求与的所成角的正弦值.21.已知函数(1)求的最小正周期;(2)设,求的值域和单调递减区间22.设函数.(1)计算;(2)求函数的零点;(3)根据第(1)问计算结果,写出的两条有关奇偶性和单调性的正确性质,并证明其中一个.

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】利用辅助角公式、两角差的正弦公式化简解析式:,并求出和,由条件和正弦函数的最值列出方程,求出的表达式,由诱导公式求出的值【详解】解:函数(其中,又时取得最大值,,,即,,,故选:2、C【解析】由全称命题的否定是特称命题可得答案.【详解】根据全称命题的否定是特称命题,所以“,”的否定为“,”.故选:C.3、D【解析】对于,,,故,故错误;根据对数函数的单调性,可知错误故选4、C【解析】∵集合,,∴是方程的解,即∴∴,故选C5、C【解析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C6、C【解析】根据根式、分式、对数的性质求各函数的定义域即可.【详解】A:定义域为,定义域为,不合题设;B:定义域为,定义域为,不合题设;C:、定义域均为,符合题设;D:定义域为,定义域为,不合题设;故选:C.7、D【解析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【详解】化简分母得.故原式等于.故选D【点睛】本题主要考查了两角和与差公式以及倍角公式.属于基础题8、D【解析】根据幂函数和偶函数的定义可得的值,进而可求得过的定点.【详解】因为是幂函数,所以得或,又偶函数,所以,函数恒过定点.故选:.【点睛】本题主要考查的是幂函数和偶函数的定义,以及对数函数性质的应用,是基础题.9、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B10、C【解析】由三视图可知,该几何体为半个圆柱,故体积为.11、A【解析】根据所给函数可得答案.【详解】根据题意得,的值域为.故选:A.12、D【解析】根据三角函数角的范围和符号之间的关系进行判断即可【详解】∵﹣1≤cosx≤1,且sin(cosx)>0,∴0<cosx≤1,又sinx<0,∴角x为第四象限角,故选D【点睛】本题主要考查三角函数中角的象限的确定,根据三角函数值的符号去判断象限是解决本题的关键二、填空题(本大题共4小题,共20分)13、【解析】解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1Rt△AOC中,r=AO==,从而弧长为α×r=2×=,故答案为考点:弧长公式14、【解析】根据两点间的距离求得正确答案.【详解】.故答案为:15、【解析】表示周期为3的函数,故,故可以得出结果【详解】解:表示周期为3的函数,【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题16、1,0【解析】令指数为0即可求得函数图象所过的定点.【详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).三、解答题(本大题共6小题,共70分)17、(1)(2)或【解析】(1)由题意可得且,从而可求出的值,则得,然后求出的值域,进而可求出的值域,(2)函数,设,则,然后分和两种情况求的最值,列方程可求出的值【小问1详解】根据题意,二次函数的图象关于直线对称,则有,即,①又由方程即有两个相等的实数根,则有,②联立①②可得:,,则,则有,则,即函数的值域为;【小问2详解】根据题意,函数,设,则,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,综合可得:或18、证明见解析【解析】先证明充分性,即由可以推得角为第二象限角,再证明必要性,即由角为第二象限角可以推得成立.【详解】证明:充分性:即如果成立,那么为第二象限角若成立,那么为第一或第二象限角,也可能是y轴正半轴上的角;又成立,那么为第二或第四象限角因为成立,所以角的终边只能位于第二象限于是角为第二象限角则是角为第二象限角的充分条件必要性:即若角为第二象限角,那么成立若角为第二象限角,则,,则,同时成立,即角为第二象限角,那么成立则角为第二象限角是成立的必要条件综上可知,角为第二象限角的充要条件是19、(Ⅰ);(Ⅱ)【解析】(1)根据根式有意义的条件,并结合指数函数的性质解不等式得到集合A;(2)先求解集合,由得到A是B的子集,根据集合包含关系列出关于a的不等式,求得a的取值范围【详解】(Ⅰ)由已知得:(Ⅱ)由∵,∴或∵,∴,∴20、(1)见解析;(2)【解析】(1)根据长方体的性质,侧棱平行且相等,利用平行四边形判定及性质,推出线线平行,再证线面平行;(2)由(1),取平行线,即可求解异面直线所成角的平面角,再求正弦值.【详解】(1)连结交于点,连结,,,,..又平面,平面,平面(2)与的所成角为在中:【点睛】(1)立体几何中平行关系的证明,常见方法有平行四边形对边平行,本题比较基础.(2)借助平行线,将两条异面直线所成角转化为两条相交直线所成角,为常用方法,中等题型.21、(1);(2)的值域为,的递减区间为【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据的范围求得,再结合正弦函数的性质可得到函数的值域,求得单调递减区间【详解】(1)(2)∵,,的值域为,当,即,时,单调递减,且,所以的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论