理论力学12-2动量矩定理_第1页
理论力学12-2动量矩定理_第2页
理论力学12-2动量矩定理_第3页
理论力学12-2动量矩定理_第4页
理论力学12-2动量矩定理_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例3高炉运送矿石的卷扬机如图。已知鼓轮的半径为R,质量为m1,绕O轴转动。小车和矿石的总质量为m2。作用在鼓轮上的力偶矩为M,鼓轮对转轴的转动惯量为J,轨道倾角为a。设绳质量和各处摩擦不计,求小车的加速度a。解:以系统为研究对象,受力如图。以顺时针为正,则由,有动量矩定理MOm2gNvm1gFOxFOyw因 ,于是解得若M>m2gRsina,则a>0,小车的加速度沿轨道向上。

必须强调的是:为使动量矩定理中各物理量的正负号保持协调,动量矩和力矩的正负号规定必须完全一致。动量矩定理例4水平杆AB长2a,可绕铅垂轴z转动,其两端各用铰链与长为l的杆AC及BD相连,杆端各联结质量为m的小球C和D。起初两小球用细线相连,使杆AC与BD均为铅垂,这系统绕z轴的角速度为w0。如某时此细线拉断,杆AC和BD各与铅垂线成a角。不计各杆的质量,求这时系统的角速度w。解:以系统为研究对象,系统所受的外力有小球的重力和轴承处的反力,这些力对转轴之矩都等于零。所以系统对转轴的动量矩守恒,即显然,此时的角速度w<w

0。解:取系统为研究对象例5

均质圆轮半径为R、质量为m,圆轮对转轴的转动惯量为JO。圆轮在重物P带动下绕固定轴O转动,已知重物重量为W。求重物下落的加速度。应用动量矩定理OPWvmgFOxFOyw例7一绳跨过定滑轮,其一端吊有质量为m的重物A,另一端有一质量为m的人以速度u相对细绳向上爬。若滑轮半径为r,质量不计,并且开始时系统静止,求人的速度。解:以系统为研究对象,受力如图。设重物A上升的速度为v,则人的绝对速度va的大小为由于SMO(F(e))=0,且系统初始静止,所以LO=0。由上可知,人与重物A具有相同的的速度,此速度等于人相对绳的速度的一半。如果开始时,人与重物A位于同一高度,则不论人以多大的相对速度爬绳,人与重物A将始终保持相同的高度。uvave=vmgmguAOFOxFOy例9如图所示,啮合齿轮各绕定轴O1、O2转动,其半径分别为r1、r2,质量分别为m1、m2,转动惯量分别为J1、J2,今在轮O1上作用一力矩M,求其角加速度。解:分别以两轮为研究对象,受力如图,由刚体定轴转动的微分方程,有由运动学关系,得注意到 ,联立求解以上三式得O1r1r2O2MFO1yFO1xFtFnm1gFO2yFO2xm2gO1O2F′tF′nMOFOxFOyW=mgOFOyFOxW=mg解除约束前:

FOx=0,FOy=mg/2突然解除约束瞬时:

FOx=?,FOy=?例题10关于突然解除约束问题

突然解除约束瞬时,杆OA将绕O轴转动,不再是静力学问题。这时,0,0。需要先求出,再确定约束力。应用定轴转动微分方程应用质心运动定理OFOxFOyW=mg

例14均质圆盘质量为2m,半径为r。细杆OA质量为m,长为l=3r,绕轴O转动的角速度为w、求下列三种情况下系统对轴O的动量矩:(a)圆盘与杆固结;(b)圆盘绕轴A相对杆OA以角速度w逆时针方向转动;(c)圆盘绕轴A相对杆OA以角速度w顺时针方向转动。解:(a)(b)(c)

例15一均质圆柱,质量为m,半径为r,无初速地放在倾角为q的斜面上,不计滚动阻力,求其质心的加速度。

解:以圆柱体为研究对象。圆柱体在斜面上的运动形式,取决于接触处的光滑程度,下面分三种情况进行讨论:(1)设接触处完全光滑此时圆柱作平动,由质心运动定理即得圆柱质心的加速度CqCxyOqaCFNmg(2)设接触处足够粗糙

此时圆柱作纯滚动,列出平面运动微分方程解得由于圆柱作纯滚动,故F由纯滚动条件有所以,可得这就是圆柱体在斜面上作纯滚动的条件。qCxyaCOFNmg(3)设不满足圆柱体在斜面上作纯滚动的条件设圆柱体沿斜面滑动的动摩擦系数为f',则滑动摩擦力于是圆柱体在斜面上既滚动又滑动,在这种情况下,aC≠ra例16均质圆柱体A和B质量均为m,半径均为r。圆柱A可绕固定轴O转动。一绳绕在圆柱A上,绳的另一端绕在圆柱B上。求B下落时,质心C点的加速度。摩擦不计。解:取A分析,受力如图。A作定轴转动,应用定轴转动的微分方程有其中aAFTmgFOxFOyOAF'TmgaBCDBaC取B分析,受力如图。B作平面运动。应用平面运动的微分方程有由运动学关系aD=raA,,而由加速度合成定理有例17均质杆质量为m,长为l,在铅直平面内一端沿着水平地面,另一端沿着铅垂墙壁,从图示位置无初速地滑下。不计摩擦,求开始滑动的瞬时,地面和墙壁对杆的约束反力。解:以杆AB为研究对象,分析受力。yBqCAmgxBqCAFAFB杆作平面运动,设质心C的加速度为aCx、aCy,角加速度为a。aaCxaCy由刚体平面运动微分方程mgBqCAxy以C点为基点,则A点的加速度为再以C点为基点,则B点的加速度为aAaaBaCxaCyatBCatAC在运动开始时,w=0,故,将上式投影到y

轴上,得an=0AC同理, ,将上式投影到x轴上,得an=0BC联立求解(1)~(5)式,并注意到可得注:

亦可由坐标法求出(4)、(5)式:运动开始时,,故BqCAxyjAxCB例18如图质量为m的均质杆AB用细绳吊住,已知两绳与水平方向的夹角为j。求B端绳断开瞬时,A端绳的张力。解:取杆分析,建立如图坐标。有AB作平面运动,以A为基点,则jjABFT因为断开初瞬时,vA=0,w=0,故,an=0Aan=0CA将上式投影到x轴上,得an

CAat

CAat

Aan

AajAxCBaaCxmg例19长l,质量为m的均质杆AB和BC用铰链B联接,并用铰链A固定,位于平衡位置。今在C端作用一水平力F,求此瞬时,两杆的角加速度。解:分别以AB和BC为研究对象,受力如图。AB和BC分别作定轴转动和平面运动。对AB由定轴转动的微分方程得CBAFABFAxFBxFByaBWaABFAyBC作平面运动,取B为基点,则将以上矢量式投影到水平方向,得(4)由(1)~(4)联立解得对BC由刚体平面运动的微分方程得(2)(3)BGCaBCFWaGxaGyatGBF'ByF'BxO例20平板质量为m1,受水平力F作用而沿水平面运动,板与水平面间的动摩擦系数为f,平板上放一质量为m2的均质圆柱,它相对平板只滚动不滑动,求平板的加速度。解:取圆柱分析,建立如图坐标。于是得:FaCFN1F1m2gaaOaxyxyF'N1F'1FN2F2m1gFa取板分析例21行星齿轮机构的曲柄OO1受力矩M作用而绕固定铅直轴O转动,并带动齿轮O1在固定水平齿轮O上滚动如图所示。设曲柄OO1为均质杆,长l、重P;齿轮O1为均质圆盘,半径r

、重Q。试求曲柄的角加速度及两齿轮接触处沿切线方向的力。

解:以曲柄为研究对象,曲柄作定轴转动,列出定轴转动微分方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论