23+光波在声光晶体中的传播课件_第1页
23+光波在声光晶体中的传播课件_第2页
23+光波在声光晶体中的传播课件_第3页
23+光波在声光晶体中的传播课件_第4页
23+光波在声光晶体中的传播课件_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022/12/1共33页1

当光波和声波同时射到晶体上时,声波和光波之间将会产生相互作用,从而可用于控制光束,如使光束发生偏转、使光强和频率发生变化等,这种晶体称为声光晶体。常见的声光晶体有钼酸铅(PbMoO4)、二氧化碲(TeO2)、硫代砷酸砣(Tl3AsS4)等。由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播。当激光通过此介质的时候,就会发生光的衍射,即声光衍射。二氧化碲晶体2.3光波在声光晶体中传播2022/11/30共33页1当光2022/12/1共33页2声光效应的应用:(1)测量最早的声光效应仅用于物理性质的测量,如声场的能量分布、声衰减系数、声速的弹性系数以及弹性系数的测量(2)光电子激光和超声波技术的发展,使声光效应子在光电子上有广泛的应用。如声光调制器、声光调Q、声光锁模器和声光偏转器。(3)其他方面利用声光效应产生的衍射可以改变光束的强度、方向和频率,因而可以设计制造光强度调制器、光束偏转器和激光Q开关等器件。2.3光波在声光晶体中传播2022/11/30共33页2声光效应的应用:22022/12/1共33页3弹光效应:当物质受到弹性应力或应变作用时,介质的折射率发生变化,这种由于应力使折射率发生变化的现象称为弹光效应。声光衍射:由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播。当激光通过此介质的时候,就会发生光的衍射。2.3光波在声光晶体中传播光波与声波是如何相互作用的?开篇问题2022/11/30共33页32.3光波在声2022/12/1共33页4

声波是一种弹性波(纵向应力波),使介质产生相应的弹性形变,激起各质点沿声波的传播方向振动,引起介质的密度呈疏密相间的交替变化。

介质的折射率也随着发生相应的周期性变化。超声场作用的这部分如同一个光学的“相位光栅”,该光栅间距(光栅常数)等于声波波长s。当光波通过此介质时,就会产生光的衍射。其衍射光的强度、频率、方向等都随着超声场的变化而变化。一、声光栅2022/11/30共33页4声2022/12/1共33页5

声波在介质中传播分为行波和驻波两种形式。图1.3-1所示为某一瞬间超声行波的情况,其中深色部分表示介质受到压缩,密度增大,相应的折射率也增大,而白色部分表示介质密度减小,对应的折射率也减小。在行波声场作用下,介质折射率的增大或减小交替变化,并以声速s(一般为n大n小103m/s量级)向前推进。由于声速仅为光速(108m)的数十万分之一,所以对光波来说,运动的“声光栅”可以看作是静止的。设声波的角频率为s,波矢为ks(=2/s),2022/11/30共33页5声波在介质中传2022/12/1共33页6或者写成:这里n=-ksA,则行波时的折射率:此处n=-(1/2)no3

PS,(1.3-3’)式中,S为超声波引起介质产生的应变,P为材料的弹光系数。式中a为介质质点的瞬时位移,A为质点位移的幅度。可近似地认为,介质折射率的变化正比于介质质点沿x方向位移的变化率,即(1.3-1)声波的方程为2022/11/30共33页6或者写成:这里2022/12/1共33页7

声驻波是由波长、振幅和相位相同,传播方向相反的两束声波叠加而成的,如图1.3-2所示。其声驻波方程为

声驻波的振幅为2Acos(2πx/λs),它在x方向上各点不同,但相位2πt/Ts在各点均相同。在x=nλs/2或2nλs/4(n=0,1,2,…)各点上,驻波的振幅为极大(等于2A),这些点称为波腹,波腹间的距离为λs/2。在x=(2n+1)λs/4的各点上,驻波的振幅为零,这些点称为波节,波节之间的距离也是λs/2。(1.3-4)图1.3-2超声驻波x=nλs/2x=(2n+1)λs/42022/11/30共33页7声2022/12/1共33页8由于波腹和波节在介质中的位置是固定的,形成的光栅在空间也是固定的。形成的折射率变化(正比于介质质点沿x方向位移的变化率,对上式求导并令△n=-4Aπ/λs)(1.3-5)

在一周期内,介质两次出现疏密层,波节处密度保持不变,折射率每隔半个周期(Ts/2)就在波腹处变化一次,由极大(或极小)变为极小(或极大)。在两次变化的某一瞬间,介质各部分的折射率相同,相当于一个没有声场作用的均匀介质。

若超声频率为fs,那么光栅出现和消失的次数则为2fs

,因而光波通过该介质后所得到的调制光的调制频率将为声频率的两倍。2022/11/30共33页8由于波腹和波节在介2022/12/1共33页9

按照声波频率的高低以及声波和光波作用长度的不同,声光互作用可以分为拉曼—纳斯(Raman—Nath)衍射和布拉格(Bragg)衍射两种类型。二、声光相互作用的两种类型

当超声波频率较低,光波平行于声波面入射(即垂直于声场传播方向),声光互作用长度L较短时,产生拉曼—纳斯衍射。相反情况为布拉格衍射。2022/11/30共33页9按2022/12/1共33页10

由于声速比光速小很多,故声光介质可视为一个静止的平面相位光栅。而且声波长λs比光波长λ大得多,当光波平行通过介质时,几乎不通过声波面,因此只受到相位调制,即通过光学稠密(折射率大)部分的光波波阵面将推迟,而通过光学疏松(折射率小)部分的光波波阵面将超前,于是通过声光介质的平面波波阵面出现凸凹现象,变成一个折皱曲面。?1拉曼-纳斯衍射2022/11/30共33页102022/12/1共33页11

设声光介质中的声波是一个宽度为L沿着x方向传播的平面纵波(声柱),波长为λs(角频率ωs),波矢量ks

指向x轴,入射光波矢量ki指向y轴方向,如图1.3-4所示。当把声行波近似视为不随时间变化的超声场时,可略去对时间的依赖关系,这样沿z方向的折射率分布可简化为n(x,t)=no+nsin(ωst-ksx)

(1.3-7)

n(x,t)=no+nsin(ksx)

(1.3-8)no为平均折射率;n为声致折射率变化。2022/11/30共33页11设2022/12/1共33页12

Ein=Aexp(iωct)(1.3-9)则在y=L/2处出射的光波不再是单色平面波,而是一个被调制了的光波,其等相面是由函数n(x)决定的折皱曲面,其光场可写成(1.3-10)由介质折射率发生周期性变化,会对入射光波的相位进行调制。如考察一平面光波垂直入射的情况,在介质的前表面y=-L/2处入射,入射光波为该出射波阵面可分成若干个子波源,则在很远的P点处总的衍射2022/11/30共33页122022/12/1共33页13(1.3-12)式中,l=sinθ(因观察角度不同引起的附加相位延迟)表示衍射方向的正弦;q为入射光束宽度。将ν=(Δn)kiL=2π(Δn)L/λ代入上式(ν是因折射率不同引起的附加相位延迟),并利用欧拉公式展开成下面形式:(1.3-11)光场强是所有子波源贡献的求和,即由下列积分决定:利用关系式:2022/11/30共33页13(1.3-12)2022/12/1共33页14式中,Jr(υ)是r阶贝塞尔函数。将此式代入(1.3-12)式,经积分得到实部的表示式为(因为k=2π/λ)(1.3-15)(1.3-13)而(1.3-12)式的虚部的积分为零。由上式可以看出,衍射光场强各项取极大值的条件为

sinθki土mks=0(m=整数≥0)(1.3-14)当θ角和声波波矢ks

确定后,其中某一项为极大时,其他项的贡献几乎等于零,因而当m取不同值时,不同θ角方向的衍射光取极大值。(1.3-14)式则确定了各级衍射的方位角2022/11/30共33页14式中,Jr(υ2022/12/1共33页15综述以上分析,拉曼—纳斯声光衍射的结果,使光波在远场分成一组衍射光,它们分别对应于确定的衍射角θm(即传播方向)和衍射强度,其中衍射角由(1.3—15)式决定;而衍射光强由(1.3—16)式决定,因此这一组衍射光是离散型的。由于,故各级衍射光对称地分布在零级衍射光两侧,且同级次衍射光的强度相等。这是拉曼—纳斯衍射的主要持征之一。另外,由于3210-1-2-3(1.3-15)(1.3—16)式中,m表示衍射光的级次。各级衍射光的强度为表明无吸收时衍射光各级极值光强之和应等于入射光强,即光功率是守恒的。2022/11/30共33页15综述以上分析,拉2022/12/1共33页16由于光波与声波场的相互作用,各级衍射光波将产生多普勒频移,根据能量守恒原理,应有

ω=ωi土mωs

(1.3-17)而且各级衍射光强将受到角频率为2ωs的调制。但由于超声波频率为109Hz,而光波频率高达1014Hz量级,故频移的影响可忽略不计。2022/11/30共33页16由于光波与声波场2022/12/1共33页17当入射光与声波面间夹角满足一定条件时,介质内各级衍射光会相互干涉,各高级次衍射光将互相抵消,只出现0级和+l级(或-1级)(视入射光的方向而定)衍射光,即产生布拉格衍射(类似于闪耀光栅)。因此,若能合理选择参数,超声场足够强,可使入射光能量几乎全部转移到+1级(或-1级)衍射极值上。因而光束能量可以得到充分利用。利用布拉格衍射效应制成的声光器件可以获得较高的效率。2布拉格衍射各向同性介质中的正常布拉格衍射。2022/11/30共33页17当入射光与声波面2022/12/1共33页18闪耀光栅(blazedgrating)当光栅刻划成锯齿形的线槽断面时,光栅的光能量便集中在预定的方向上,即

闪耀光栅。某一光谱级上。从这个方向探测时,光谱的强度最大,这种现象称为闪耀(blaze),这种光栅称为闪耀光栅。在这样刻成的闪耀光栅中,起衍射作用的槽面是个光滑的平面,它与光栅的表面一夹角,称为闪耀角(blazeangle)。最大光强度所对应的波长,称为闪耀波长(blazewavelength)。通过闪耀角的设计,可以使光栅适用于某一特定波段的某一级光谱。2022/11/30共33页18闪耀光栅(bla2022/12/1共33页19可把声波通过的介质近似看作许多相距为λs的部分反射、部分透射的镜面。对行波超声场,这些镜面将以速度vs

沿x方向移动(因为s<<c

,所以在某一瞬间,超声场可近似看成是静止的,因而对衍射光的强度分布没有影响)。对驻波超声场则完全是不动的,2022/11/30共33页19可把声波通过的介2022/12/1共33页20当平面波l和2以角度i入射至声波场,在B、C、E各点处部分反射,产生衍射光1’,2’,3’。各衍射光相干增强的条件是它们之间的光程差应为其波长的整倍数,或者说它们必须同相位。图a表示在同一镜面上的衍射情况.入射光l和2在B,C点反射的1’和2’同相位的条件,必须使光程差AC-BD等于光波波长的整倍数,即xc(cosi-cosd

)=m/n

(1.3-18)idxc2022/11/30共33页20当平面波l和2022/12/1共33页21要使声波面上所有点同时满足这一条件,只有使

i=d

(1.3-19)即入射角等于衍射角时才能实现。

对于相距λs的两个不同镜面上的衍射情况,如图b所示,由C,E点反射的2’,3’光束具有同相位的条件,其光程差FE十EG必须等于光波波长的整数倍,即

λs(sini+sind

)=mλ/n

(1.3-20)考虑到i=d,所以id2022/11/30共33页21要使声波面上所有2022/12/1共33页222λssinB=λ/n

或者sinB=λ/(2nλs)=λfs/(2nvs)(1.3-21)式中i=d=B,称为布拉格角。可见,只有入射角i等于布拉格角B时,在声波面上衍射的光波才具有同相位,满足相干加强的条件,得到衍射极值,上式称为布拉格方程。下面简要分析布拉格衍射光强度与声光材料特性和声场强度的关系。根据推证,当入射光强为Ii时,布拉格声光衍射的0级和1级衍射光强的表达式可分别写成已知是光波穿过长度为L的超声场所产生的附加相位延迟。可用声致折射率的变化△n来表示(前面提过),

即ν=2πΔnL/λ则(1.3—23)Δn=-n3PS/22022/11/30共33页2223+光波在声光晶体中的传播课件2022/12/1共33页24作业:P83:7,9.2022/11/30共33页24作业:P83:72022/12/1共33页252022/11/30共33页252022/12/1共33页262022/11/30共33页262022/12/1共33页27

当光波和声波同时射到晶体上时,声波和光波之间将会产生相互作用,从而可用于控制光束,如使光束发生偏转、使光强和频率发生变化等,这种晶体称为声光晶体。常见的声光晶体有钼酸铅(PbMoO4)、二氧化碲(TeO2)、硫代砷酸砣(Tl3AsS4)等。由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播。当激光通过此介质的时候,就会发生光的衍射,即声光衍射。二氧化碲晶体2.3光波在声光晶体中传播2022/11/30共33页1当光2022/12/1共33页28声光效应的应用:(1)测量最早的声光效应仅用于物理性质的测量,如声场的能量分布、声衰减系数、声速的弹性系数以及弹性系数的测量(2)光电子激光和超声波技术的发展,使声光效应子在光电子上有广泛的应用。如声光调制器、声光调Q、声光锁模器和声光偏转器。(3)其他方面利用声光效应产生的衍射可以改变光束的强度、方向和频率,因而可以设计制造光强度调制器、光束偏转器和激光Q开关等器件。2.3光波在声光晶体中传播2022/11/30共33页2声光效应的应用:22022/12/1共33页29弹光效应:当物质受到弹性应力或应变作用时,介质的折射率发生变化,这种由于应力使折射率发生变化的现象称为弹光效应。声光衍射:由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播。当激光通过此介质的时候,就会发生光的衍射。2.3光波在声光晶体中传播光波与声波是如何相互作用的?开篇问题2022/11/30共33页32.3光波在声2022/12/1共33页30

声波是一种弹性波(纵向应力波),使介质产生相应的弹性形变,激起各质点沿声波的传播方向振动,引起介质的密度呈疏密相间的交替变化。

介质的折射率也随着发生相应的周期性变化。超声场作用的这部分如同一个光学的“相位光栅”,该光栅间距(光栅常数)等于声波波长s。当光波通过此介质时,就会产生光的衍射。其衍射光的强度、频率、方向等都随着超声场的变化而变化。一、声光栅2022/11/30共33页4声2022/12/1共33页31

声波在介质中传播分为行波和驻波两种形式。图1.3-1所示为某一瞬间超声行波的情况,其中深色部分表示介质受到压缩,密度增大,相应的折射率也增大,而白色部分表示介质密度减小,对应的折射率也减小。在行波声场作用下,介质折射率的增大或减小交替变化,并以声速s(一般为n大n小103m/s量级)向前推进。由于声速仅为光速(108m)的数十万分之一,所以对光波来说,运动的“声光栅”可以看作是静止的。设声波的角频率为s,波矢为ks(=2/s),2022/11/30共33页5声波在介质中传2022/12/1共33页32或者写成:这里n=-ksA,则行波时的折射率:此处n=-(1/2)no3

PS,(1.3-3’)式中,S为超声波引起介质产生的应变,P为材料的弹光系数。式中a为介质质点的瞬时位移,A为质点位移的幅度。可近似地认为,介质折射率的变化正比于介质质点沿x方向位移的变化率,即(1.3-1)声波的方程为2022/11/30共33页6或者写成:这里2022/12/1共33页33

声驻波是由波长、振幅和相位相同,传播方向相反的两束声波叠加而成的,如图1.3-2所示。其声驻波方程为

声驻波的振幅为2Acos(2πx/λs),它在x方向上各点不同,但相位2πt/Ts在各点均相同。在x=nλs/2或2nλs/4(n=0,1,2,…)各点上,驻波的振幅为极大(等于2A),这些点称为波腹,波腹间的距离为λs/2。在x=(2n+1)λs/4的各点上,驻波的振幅为零,这些点称为波节,波节之间的距离也是λs/2。(1.3-4)图1.3-2超声驻波x=nλs/2x=(2n+1)λs/42022/11/30共33页7声2022/12/1共33页34由于波腹和波节在介质中的位置是固定的,形成的光栅在空间也是固定的。形成的折射率变化(正比于介质质点沿x方向位移的变化率,对上式求导并令△n=-4Aπ/λs)(1.3-5)

在一周期内,介质两次出现疏密层,波节处密度保持不变,折射率每隔半个周期(Ts/2)就在波腹处变化一次,由极大(或极小)变为极小(或极大)。在两次变化的某一瞬间,介质各部分的折射率相同,相当于一个没有声场作用的均匀介质。

若超声频率为fs,那么光栅出现和消失的次数则为2fs

,因而光波通过该介质后所得到的调制光的调制频率将为声频率的两倍。2022/11/30共33页8由于波腹和波节在介2022/12/1共33页35

按照声波频率的高低以及声波和光波作用长度的不同,声光互作用可以分为拉曼—纳斯(Raman—Nath)衍射和布拉格(Bragg)衍射两种类型。二、声光相互作用的两种类型

当超声波频率较低,光波平行于声波面入射(即垂直于声场传播方向),声光互作用长度L较短时,产生拉曼—纳斯衍射。相反情况为布拉格衍射。2022/11/30共33页9按2022/12/1共33页36

由于声速比光速小很多,故声光介质可视为一个静止的平面相位光栅。而且声波长λs比光波长λ大得多,当光波平行通过介质时,几乎不通过声波面,因此只受到相位调制,即通过光学稠密(折射率大)部分的光波波阵面将推迟,而通过光学疏松(折射率小)部分的光波波阵面将超前,于是通过声光介质的平面波波阵面出现凸凹现象,变成一个折皱曲面。?1拉曼-纳斯衍射2022/11/30共33页102022/12/1共33页37

设声光介质中的声波是一个宽度为L沿着x方向传播的平面纵波(声柱),波长为λs(角频率ωs),波矢量ks

指向x轴,入射光波矢量ki指向y轴方向,如图1.3-4所示。当把声行波近似视为不随时间变化的超声场时,可略去对时间的依赖关系,这样沿z方向的折射率分布可简化为n(x,t)=no+nsin(ωst-ksx)

(1.3-7)

n(x,t)=no+nsin(ksx)

(1.3-8)no为平均折射率;n为声致折射率变化。2022/11/30共33页11设2022/12/1共33页38

Ein=Aexp(iωct)(1.3-9)则在y=L/2处出射的光波不再是单色平面波,而是一个被调制了的光波,其等相面是由函数n(x)决定的折皱曲面,其光场可写成(1.3-10)由介质折射率发生周期性变化,会对入射光波的相位进行调制。如考察一平面光波垂直入射的情况,在介质的前表面y=-L/2处入射,入射光波为该出射波阵面可分成若干个子波源,则在很远的P点处总的衍射2022/11/30共33页122022/12/1共33页39(1.3-12)式中,l=sinθ(因观察角度不同引起的附加相位延迟)表示衍射方向的正弦;q为入射光束宽度。将ν=(Δn)kiL=2π(Δn)L/λ代入上式(ν是因折射率不同引起的附加相位延迟),并利用欧拉公式展开成下面形式:(1.3-11)光场强是所有子波源贡献的求和,即由下列积分决定:利用关系式:2022/11/30共33页13(1.3-12)2022/12/1共33页40式中,Jr(υ)是r阶贝塞尔函数。将此式代入(1.3-12)式,经积分得到实部的表示式为(因为k=2π/λ)(1.3-15)(1.3-13)而(1.3-12)式的虚部的积分为零。由上式可以看出,衍射光场强各项取极大值的条件为

sinθki土mks=0(m=整数≥0)(1.3-14)当θ角和声波波矢ks

确定后,其中某一项为极大时,其他项的贡献几乎等于零,因而当m取不同值时,不同θ角方向的衍射光取极大值。(1.3-14)式则确定了各级衍射的方位角2022/11/30共33页14式中,Jr(υ2022/12/1共33页41综述以上分析,拉曼—纳斯声光衍射的结果,使光波在远场分成一组衍射光,它们分别对应于确定的衍射角θm(即传播方向)和衍射强度,其中衍射角由(1.3—15)式决定;而衍射光强由(1.3—16)式决定,因此这一组衍射光是离散型的。由于,故各级衍射光对称地分布在零级衍射光两侧,且同级次衍射光的强度相等。这是拉曼—纳斯衍射的主要持征之一。另外,由于3210-1-2-3(1.3-15)(1.3—16)式中,m表示衍射光的级次。各级衍射光的强度为表明无吸收时衍射光各级极值光强之和应等于入射光强,即光功率是守恒的。2022/11/30共33页15综述以上分析,拉2022/12/1共33页42由于光波与声波场的相互作用,各级衍射光波将产生多普勒频移,根据能量守恒原理,应有

ω=ωi土mωs

(1.3-17)而且各级衍射光强将受到角频率为2ωs的调制。但由于超声波频率为109Hz,而光波频率高达1014Hz量级,故频移的影响可忽略不计。2022/11/30共33页16由于光波与声波场2022/12/1共33页43当入射光与声波面间夹角满足一定条件时,介质内各级衍射光会相互干涉,各高级次衍射光将互相抵消,只出现0级和+l级(或-1级)(视入射光的方向而定)衍射光,即产生布拉格衍射(类似于闪耀光栅)。因此,若能合理选择参数,超声场足够强,可使入射光能量几乎全部转移到+1级(或-1级)衍射极值上。因而光束能量可以得到充分利用。利用布拉格衍射效应制成的声光器件可以获得较高的效率。2布拉格衍射各向同性介质中的正常布拉格衍射。2022/11/30共33页17当入射光与声波面2022/12/1共33页44闪耀光栅(blazedgrating)当光栅刻划成锯齿形的线槽断面时,光栅的光能量便集中在预定的方向上,即

闪耀光栅。某一光谱级上。从这个方向探测时,光谱的强度最大,这种现象称为闪耀(blaze),这种光栅称为闪耀光栅。在这样刻成的闪耀光栅中,起衍射作用的槽面是个光滑的平面,它与光栅的表面一夹角,称为闪耀角(blazeangle)。最大光强度所对应的波长,称为闪耀波长(blazewavelength)。通过闪耀角的设计,可以使光栅适用于某一特定波段的某一级光谱。2022/11/30共33页18闪耀光栅(bla2022/12/1共33页45可把声波通过的介质近似看作许多相距为λs的部分反射、部分透射的镜面。对行波超声场,这些镜面将以速度vs

沿x方向移动(因为s<

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论