机器学习的几何观点-LAMDA课件_第1页
机器学习的几何观点-LAMDA课件_第2页
机器学习的几何观点-LAMDA课件_第3页
机器学习的几何观点-LAMDA课件_第4页
机器学习的几何观点-LAMDA课件_第5页
已阅读5页,还剩89页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AGeometricPerspectiveonMachineLearning何晓飞浙江大学计算机学院1AGeometricPerspectiveonMacMachineLearning:theproblemf何晓飞Information(trainingdata)

f:X→YXandYareusuallyconsideredasaEuclideanspaces.2MachineLearning:theproblemfManifoldLearning:geometricperspectiveThedataspacemaynotbeaEuclideanspace,butanonlinearmanifold.☒

Euclideandistance.☒

fisdefinedonEuclideanspace.☒ambientdimension☑ geodesicdistance.☑fisdefinedonnonlinearmanifold.☑manifolddimension.instead…3ManifoldLearning:geometricpManifoldLearning:thechallengesThemanifoldisunknown!Wehaveonlysamples!HowdoweknowMisasphereoratorus,orelse?HowtocomputethedistanceonM?

versusThisisunknown:Thisiswhatwehave:??orelse…?TopologyGeometryFunctionalanalysis4ManifoldLearning:thechallenManifoldLearning:currentsolutionFindaEuclideanembedding,andthenperformtraditionallearningalgorithmsintheEuclideanspace.5ManifoldLearning:currentsolSimplicity6Simplicity6Simplicity7Simplicity7Simplicityisrelative8Simplicityisrelative8Manifold-basedDimensionalityReductionGivenhighdimensionaldatasampledfromalowdimensionalmanifold,howtocomputeafaithfulembedding?Howtofindthemappingfunction?Howtoefficientlyfindtheprojectivefunction?9Manifold-basedDimensionalityAGoodMappingFunctionIfxiandxjareclosetoeachother,wehopef(xi)andf(xj)preservethelocalstructure(distance,similarity…)k-nearestneighborgraph:Objectivefunction:Differentalgorithmshavedifferentconcerns10AGoodMappingFunctionIfxiLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.11LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.12LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.Stokes’Theorem:13LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.Stokes’Theorem:LPPfindsalinearapproximationtononlinearmanifold,whilepreservingthelocalgeometricstructure.14LocalityPreservingProjectionManifoldofFaceImagesExpression(Sad>>>Happy)

Pose(Right>>>Left)15ManifoldofFaceImagesExpressManifoldofHandwrittenDigitsThicknessSlant16ManifoldofHandwrittenDigitsLearningtarget:TrainingExamples:LinearRegressionModelActiveandSemi-SupervisedLearning:AGeometricPerspective17Learningtarget:ActiveandSemGeneralizationErrorGoalofRegression

Obtainalearnedfunctionthatminimizesthegeneralizationerror(expectederrorforunseentestinputpoints).MaximumLikelihoodEstimate18GeneralizationErrorGoalofReGauss-MarkovTheoremForagivenx,theexpectedpredictionerroris:19Gauss-MarkovTheoremForagiveGauss-MarkovTheoremForagivenx,theexpectedpredictionerroris:Good!Bad!20Gauss-MarkovTheoremForagiveExperimentalDesignMethodsThreemostcommonscalarmeasuresofthesizeoftheparameter(w)covariancematrix:A-optimalDesign:determinantofCov(w).D-optimalDesign:traceofCov(w).E-optimalDesign:maximumeigenvalueofCov(w).Disadvantage:thesemethodsfailtotakeintoaccountunmeasured(unlabeled)datapoints.21ExperimentalDesignMethodsThrManifoldRegularization:Semi-SupervisedSettingMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?22ManifoldRegularization:Semi-Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?randomlabelingManifoldRegularization:Semi-SupervisedSetting23Measured(labeled)points:disMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?randomlabelingactivelearningactivelearning+semi-supervsedlearningManifoldRegularization:Semi-SupervisedSetting24Measured(labeled)points:disUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructure25UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure26UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG27UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG28UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG29UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG30UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG31UnlabeledDatatoEstimateGeoLaplacianRegularizedLeastSquare(BelkinandNiyogi,2006)LinearobjectivefunctionSolution32LaplacianRegularizedLeastSqActiveLearningHowtofindthemostrepresentativepointsonthemanifold?33ActiveLearningHowtofindtheObjective:Guidetheselectionofthesubsetofdatapointsthatgivesthemostamountofinformation.Experimentaldesign:selectsamplestolabelManifoldRegularizedExperimentalDesignSharethesameobjectivefunctionasLaplacianRegularizedLeastSquares,simultaneouslyminimizetheleastsquareerroronthemeasuredsamplesandpreservethelocalgeometricalstructureofthedataspace.ActiveLearning34Objective:Guidetheselection

,Inordertomaketheestimatorasstableaspossible,thesizeofthecovariancematrixshouldbeassmallaspossible.D-optimality:minimizethedeterminantofthecovariancematrixAnalysisofBiasandVariance35

Selectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.UpdateManifoldRegularizedExperimentalDesignWhereareselectedfromThealgorithm36ManifoldRegularizedExperimenConsiderfeaturespaceFinducedbysomenonlinearmappingφ,and<f(xi),f(xj)>=K(xi,xi).K(·,·):positivesemi-definitekernelfunctionRegressionmodelinRKHS:ObjectivefunctioninRKHS:NonlinearGeneralizationinRKHS37ConsiderfeaturespaceFinducSelectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.UpdateKernelGraphRegularizedExperimentalDesignwhereareselectedfromNonlinearGeneralizationinRKHS38KernelGraphRegularizedExperASyntheticExampleA-optimalDesignLaplacianRegularizedOptimalDesign39ASyntheticExampleA-optimalDASyntheticExampleA-optimalDesignLaplacianRegularizedOptimalDesign40ASyntheticExampleA-optimalDApplicationtoimage/videocompression41Applicationtoimage/videocomVideocompression42Videocompression42TopologyCanwealwaysmapamanifoldtoaEuclideanspacewithoutchangingitstopology?…?43TopologyCanwealwaysmapamaTopologySimplicialComplexHomologyGroupBettiNumbersEulerCharacteristicGoodCoverSamplePointsHomotopyNumberofcomponents,dimension,…44TopologySimplicialComplexHomoTopologyTheEulerCharacteristicisatopologicalinvariant,anumberthatdescribesoneaspectofatopologicalspace’sshapeorstructure.1-2012TheEulerCharacteristicofEuclideanspaceis1!0045TopologyTheEulerCharacteristChallengesInsufficientsamplepointsChoosesuitableradiusHowtoidentifynoisyholes(userinteraction?)Noisyholehomotopyhomeomorphsim46ChallengesInsufficientsampleQ&A4747AGeometricPerspectiveonMachineLearning何晓飞浙江大学计算机学院48AGeometricPerspectiveonMacMachineLearning:theproblemf何晓飞Information(trainingdata)

f:X→YXandYareusuallyconsideredasaEuclideanspaces.49MachineLearning:theproblemfManifoldLearning:geometricperspectiveThedataspacemaynotbeaEuclideanspace,butanonlinearmanifold.☒

Euclideandistance.☒

fisdefinedonEuclideanspace.☒ambientdimension☑ geodesicdistance.☑fisdefinedonnonlinearmanifold.☑manifolddimension.instead…50ManifoldLearning:geometricpManifoldLearning:thechallengesThemanifoldisunknown!Wehaveonlysamples!HowdoweknowMisasphereoratorus,orelse?HowtocomputethedistanceonM?

versusThisisunknown:Thisiswhatwehave:??orelse…?TopologyGeometryFunctionalanalysis51ManifoldLearning:thechallenManifoldLearning:currentsolutionFindaEuclideanembedding,andthenperformtraditionallearningalgorithmsintheEuclideanspace.52ManifoldLearning:currentsolSimplicity53Simplicity6Simplicity54Simplicity7Simplicityisrelative55Simplicityisrelative8Manifold-basedDimensionalityReductionGivenhighdimensionaldatasampledfromalowdimensionalmanifold,howtocomputeafaithfulembedding?Howtofindthemappingfunction?Howtoefficientlyfindtheprojectivefunction?56Manifold-basedDimensionalityAGoodMappingFunctionIfxiandxjareclosetoeachother,wehopef(xi)andf(xj)preservethelocalstructure(distance,similarity…)k-nearestneighborgraph:Objectivefunction:Differentalgorithmshavedifferentconcerns57AGoodMappingFunctionIfxiLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.58LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.59LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.Stokes’Theorem:60LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.Stokes’Theorem:LPPfindsalinearapproximationtononlinearmanifold,whilepreservingthelocalgeometricstructure.61LocalityPreservingProjectionManifoldofFaceImagesExpression(Sad>>>Happy)

Pose(Right>>>Left)62ManifoldofFaceImagesExpressManifoldofHandwrittenDigitsThicknessSlant63ManifoldofHandwrittenDigitsLearningtarget:TrainingExamples:LinearRegressionModelActiveandSemi-SupervisedLearning:AGeometricPerspective64Learningtarget:ActiveandSemGeneralizationErrorGoalofRegression

Obtainalearnedfunctionthatminimizesthegeneralizationerror(expectederrorforunseentestinputpoints).MaximumLikelihoodEstimate65GeneralizationErrorGoalofReGauss-MarkovTheoremForagivenx,theexpectedpredictionerroris:66Gauss-MarkovTheoremForagiveGauss-MarkovTheoremForagivenx,theexpectedpredictionerroris:Good!Bad!67Gauss-MarkovTheoremForagiveExperimentalDesignMethodsThreemostcommonscalarmeasuresofthesizeoftheparameter(w)covariancematrix:A-optimalDesign:determinantofCov(w).D-optimalDesign:traceofCov(w).E-optimalDesign:maximumeigenvalueofCov(w).Disadvantage:thesemethodsfailtotakeintoaccountunmeasured(unlabeled)datapoints.68ExperimentalDesignMethodsThrManifoldRegularization:Semi-SupervisedSettingMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?69ManifoldRegularization:Semi-Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?randomlabelingManifoldRegularization:Semi-SupervisedSetting70Measured(labeled)points:disMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?randomlabelingactivelearningactivelearning+semi-supervsedlearningManifoldRegularization:Semi-SupervisedSetting71Measured(labeled)points:disUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructure72UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure73UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG74UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG75UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG76UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG77UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG78UnlabeledDatatoEstimateGeoLaplacianRegularizedLeastSquare(BelkinandNiyogi,2006)LinearobjectivefunctionSolution79LaplacianRegularizedLeastSqActiveLearningHowtofindthemostrepresentativepointsonthemanifold?80ActiveLearningHowtofindtheObjective:Guidetheselectionofthesubsetofdatapointsthatgivesthemostamountofinformation.Experimentaldesign:selectsamplestolabelManifoldRegularizedExperimentalDesignSharethesameobjectivefunctionasLaplacianRegularizedLeastSquares,simultaneouslyminimizetheleastsquareerroronthemeasuredsamplesandpreservethelocalgeometricalstructureofthedataspace.ActiveLearning81Objective:Guidetheselection

,Inordertomaketheestimatorasstableaspossible,thesizeofthecovariancematrixshouldbeassmallaspossible.D-optimality:minimizethedeterminantofthecovariancematrixAnalysisofBiasandVariance82

Selectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.UpdateManifoldRegularizedExperimentalDesignWhere

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论