绝对值的三角不等式典型例题_第1页
绝对值的三角不等式典型例题_第2页
绝对值的三角不等式典型例题_第3页
绝对值的三角不等式典型例题_第4页
绝对值的三角不等式典型例题_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.4绝对值三角不等式☆教学目标:1.理解绝对值的定义,理解不等式基本性质的推导过程;2.掌握定理1的两种证明思路及其几何意义;3.理解绝对值三角不等式;4.会用绝对值不等式解决一些简单问题。☆教学重点:定理1的证明及几何意义。☆教学难点:换元思想的渗透。☆教学过程:一、引入:证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1)(2)(3)(4)请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理?实际上,性质和可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明对于任意实数都成立即可。我们将在下面的例题中研究它的证明。现在请同学们讨论一个问题:设为实数,和哪个大?显然,当且仅当时等号成立(即在时,等号成立。在时,等号不成立)。同样,当且仅当时,等号成立。含有绝对值的不等式的证明中,常常利用、及绝对值的和的性质。二、典型例题:例1、证明(1),(2)。证明(1)如果那么所以如果那么所以(2)根据(1)的结果,有,就是,。所以,。例2、证明。例3、证明。思考:如何利用数轴给出例3的几何解释?(设A,B,C为数轴上的3个点,分别表示数a,b,c,则线段当且仅当C在A,B之间时,等号成立。这就是上面的例3。特别的,取c=0(即C为原点),就得到例2的后半部分。)探究:试利用绝对值的几何意义,给出不等式的几何解释?定理1如果,那么.在上面不等式中,用向量分别替换实数,则当不共线时,由向量加法三角形法则:向量构成三角形,因此有|a+b|<|a|+|b|其几何意义是什么?含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。例4、已知,求证证明(1),∴(2)由(1),(2)得:例5、已知求证:。证明,∴,由例1及上式,。注意:在推理比较简单时,我们常常将几个不等式连在一起写。但这种写法,只能用于不等号方向相同的不等式。四、巩固性练习:1、已知求证:。2、已知求证:。作业:习题1.22、3、51.4绝对值三角不等式学案☆预习目标:1.理解绝对值的定义,理解不等式基本性质的推导过程;2.了解定理1的两种证明思路及其几何意义;3.理解绝对值三角不等式。☆预习内容:1.绝对值的定义:,2.绝对值的几何意义:10.实数的绝对值,表示数轴上坐标为的点A20.两个实数,它们在数轴上对应的点分别为,那么的几何意义是3.定理1的内容是什么?其证法有几种?4.若实数分别换成向量定理1还成立吗?5、定理2是怎么利用定理1证明的?☆探究学习:1、绝对值的定义的应用例1设函数.解不等式;求函数的最值.2.绝对值三角不等式:探究,,之间的关系.①时,如下图,容易得:.②时,如图,容易得:.③时,显然有:.综上,得定理1如果,那么.当且仅当时,等号成立.在上面不等式中,用向量分别替换实数,则当不共线时,由向量加法三角形法则:向量构成三角形,因此有它的几何意义就是:定理1的证明:定理2如果,那么.当且仅当时,等号成立.3、定理应用例2(1)证明,(2)已知,求证。☆练习:当成立的充要条件是 A. B. C. D.对任意实数,恒成立,则的取值范围是;对任意实数,恒成立,则的取值范围是若关于的不等式的解集不是空集,则的取值范围是方程的解集为,不等式的解集是已知方程有实数解,则a的取值范围为。画出不等式的图形,并指出其解的范围。利用不等式的图形解不等式1、;2、解不等式:1、;2、;3、;4、1、已知求证:。2、已知求证:。3、已知求证:1、已知求证:2、已知求证:参考答案:☆课后练习B.2、a<33、a>44、a>75、{-3<x<=-2或x>=0}{x<0或x>2}6、-3<=a<-17、先考虑不等式在平面直角坐标系内第一象限的情况。在第一象限内不等式等价于:,,.其图形是由第一象限中直线下方的点所组成。同样可画出二、三、四象限的情况。从而得到不等式的图形是以原点O为中心,四个等点分别在坐标轴上的正方形。不等式解的范围一目了然。探究:利用不等式的图形解不等式1.;2.答案:1、-0.5<x<0.52.为一菱形区域。8、1、0<x<2/3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论