版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设全集,集合,则()A. B.C. D.2.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.73.已知角的终边过点,则()A. B.C. D.14.若一个三角形采用斜二测画法作直观图,则其直观图的面积是原来三角形面积的()倍.A B.C. D.25.函数,x∈R在()A.上是增函数B.上是减函数C.上是减函数D.上是减函数6.缪天荣,浙江人,著名眼科专家、我国眼视光学的开拓者.上世纪年代,我国使用“国际标准视力表”检测视力,采用“小数记录法”记录视力数据,缪天荣发现其中存在不少缺陷.经过年苦心研究,年,他成功研制出“对数视力表”及“分记录法”.这是一种既符合视力生理又便于统计和计算的视力检测系统,使中国的眼视光学研究站在了世界的巅峰.“分记录法”将视力和视角(单位:)设定为对数关系:.如图,标准对数视力表中最大视标的视角为,则对应的视力为.若小明能看清的某行视标的大小是最大视标的(相应的视角为),取,则其视力用“分记录法”记录()A. B.C. D.7.在中,,.若边上一点满足,则()A. B.C. D.8.下列命题中正确的是()A. B.C. D.9.设函数,,则是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数10.已知全集,集合,,则∁U(A∪B)=A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,设,,若成立,则实数的最大值是_______12.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.13.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______14.函数的最小值为_______15.已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.国际上常用恩格尔系数r来衡量一个国家或地区的人民生活水平.根据恩格尔系数的大小,可将各个国家或地区的生活水平依次划分为:贫困,温饱,小康,富裕,最富裕等五个级别,其划分标准如下表:级别贫困温饱小康富裕最富裕标准r>60%50%<r≤60%40%<r=50%30%<r≤40%r≤30%某地区每年底计算一次恩格尔系数,已知该地区2000年底的恩格尔系数为60%.统计资料表明:该地区食物支出金额年平均增长4%,总支出金额年平均增长.根据上述材料,回答以下问题.(1)该地区在2010年底是否已经达到小康水平,说明理由;(2)最快到哪一年底,该地区达到富裕水平?参考数据:,,,17.已知函数(且)的图像经过点.(1)求函数的解析式;(2)若,求实数的取值范围.18.在①;②.请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的问题.在中,角所对的边分别为,__________.(1)求角;(2)求的取值范围.19.已知函数(为常数且)的图象经过点,(1)试求的值;(2)若不等式在时恒成立,求实数的取值范围.20.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.21.如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求三棱锥C-BGF的体积
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】根据补集定义计算【详解】因为集合,又因为全集,所以,.故选:A.【点睛】本题考查补集运算,属于简单题2、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C3、B【解析】根据三角函数的定义求出,再根据二倍角余弦公式计算可得;【详解】解:∵角的终边过点,所以,∴,故故选:B4、A【解析】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的,故直观图中三角形面积是原三角形面积的.故选:A.【点睛】本题考查平面图形的直观图,由斜二测画法看三角形底边长和高的变化即可,属于基础题.5、B【解析】化简,根据余弦函数知识确定正确选项.【详解】,所以在上递增,在上递减.B正确,ACD选项错误.故选:B6、C【解析】将代入,求出的值,即可得解.【详解】将代入函数解析式可得.故选:C.7、A【解析】根据向量的线性运算法则,结合题意,即可求解.【详解】由中,,且边上一点满足,如图所示,根据向量的线性运算法则,可得:.故选:A.8、A【解析】利用平面向量的加法、加法法则可判断ABD选项的正误,利用平面向量数量积可判断C选项的正误.【详解】对于A选项,,A选项正确;对于B选项,,B选项错误;对于C选项,,C选项错误;对于D选项,,D选项错误.故选:A.9、D【解析】通过诱导公式,结合正弦函数的性质即可得结果.【详解】,所以,,所以则是最小正周期为的奇函数,故选:D.10、C【解析】,,,∁U(A∪B)=故答案为C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:12、①②③④【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.13、【解析】由题得几何体为圆锥的,根据三视图的数据计算体积即可【详解】由三视图可知几何体为圆锥的,圆锥的底面半径为2,母线长为4,∴圆锥的高为∴V=×π×22×=故答案为【点睛】本题主要考查了圆锥的三视图和体积计算,属于基础题14、【解析】根据正弦型函数的性质求的最小值.【详解】由正弦型函数的性质知:,∴的最小值为.故答案为:.15、2【解析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积;故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)已经达到,理由见解析(2)2022年【解析】(1)根据该地区食物支出金额年平均增长4%,总支出金额年平均增长的比例列式求解,判断十年后是否达到即可.(2)假设经过n年,该地区达到富裕水平,列式,利用指对数互化解不等式即可.【小问1详解】该地区2000年底的恩格尔系数为%,则2010年底的思格尔系数为因为所以1,则所以所以该地区在2010年底已经达到小康水平【小问2详解】从2000年底算起,设经过n年,该地区达到富裕水平则,故,即化为因为,则In,所以因为所以所以,最快到2022年底,该地区达到富裕水平17、(1);(2)【解析】(1)直接代入数据计算得到答案.(2)确定函数单调递增,根据函数的单调性得到答案.【详解】(1)(且)的图像经过点,即,故,故.(2)函数单调递增,,故,故【点睛】本题考查了函数的解析式,根据函数单调性解不等式,意在考查学生对于函数知识的综合应用.18、(1)条件选择见解析,(2)【解析】(1)若选①,由正弦定理得,即可求出;若选②,由正弦定理得,即可求出.(2)用正弦定理得表示出,,得到,利用三角函数求出的取值范围.【小问1详解】若选①,则由正弦定理得,因为,所以,所以,所以,又因为,所以,所以,即.若选②,则由正弦定理得,所以,所以,因为,所以,所以,又因为,所以.【小问2详解】由正弦定理得,所以,同理,由,故,所以由,所以,所以,所以的取值范围是.19、(1);(2).【解析】(1)利用函数图像上的两个点的坐标列方程组,解方程组求得的值.(2)将原不等式分离常数,利用函数的单调性,求出的取值范围.【详解】(1)由于函数图像经过,,所以,解得,所以.(2)原不等式为,即在时恒成立,而在时单调递减,故在时有最小值为,故.所以实数的取值范围是.【点睛】本小题主要考查待定系数法求函数的解析式,考查不等式恒成立问题的求解策略,考查函数的单调性以及最值,属于中档题.20、(1)证明见解析(2)奇函数,证明见解析(3)【解析】(1)根据函数单调性的定义,准确运算,即可求解;(2)根据函数奇偶性的定义,准确化简,即可求解;(3)根据函数的奇偶性和单调性,把不等式转化为,得到,即可求解【小问1详解】证明:,且,则,因为,,,所以,即,所以在上单调递增【小问2详解】证明:由,即,解得,即的定义域为,对于任意,函数,则,即,所以是奇函数.【小问3详解】解:由(1)知,函数在上单调递增,又因为x是增函数,所以是上的增函数,由,可得,由,可得,因为奇函数,所以,所以原不等式可化为,则,解得,所以原不等式的解集为21、(1)见详解;(2)见详解;(3)【解析】(1)证明∵AD⊥平面ABE,AD∥BC,∴BC⊥平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国地震应急搜救中心公开招聘应届毕业生5人高频重点提升(共500题)附带答案详解
- 2025下半年黑龙江绥化学院招聘32人高频重点提升(共500题)附带答案详解
- 2025下半年湖南常德市澧县部分事业单位招聘9人高频重点提升(共500题)附带答案详解
- 2025下半年浙江温州市鹿城区事业单位招聘(选调)拟聘高频重点提升(共500题)附带答案详解
- 2025下半年江苏盐城市射阳县机关和事业单位选调8人历年高频重点提升(共500题)附带答案详解
- 2025下半年广东清远市直事业单位招聘31人历年高频重点提升(共500题)附带答案详解
- 2025下半年安徽池州市贵池区事业单位招聘工作人员41人高频重点提升(共500题)附带答案详解
- 2025下半年四川广元剑阁县委组织部人社局考试招聘事业单位工作人员高频重点提升(共500题)附带答案详解
- 2025下半年四川事业单位联考招聘历年高频重点提升(共500题)附带答案详解
- 2025上半年福建省宁德福安市事业单位招聘89人及历年高频重点提升(共500题)附带答案详解
- 幼儿园后勤主任年终总结
- 机器人设备巡检管理制度
- 带式运输机传动装置的设计
- DB50T 1689-2024 绿茶型老鹰茶加工技术规范
- 初级消防设施操作员实操题库 (一)
- 国家职业技术技能标准 4-02-01-01 轨道列车司机(动车组司机)人社厅发2019121号
- CURTIS1232-1234-1236-SE-SERIES交流控制器手册
- 2024年国家开放大学(电大)-混凝土结构设计(A)考试近5年真题集锦(频考类试题)带答案
- 2024年山东省临沂兰山法院招聘司法辅助人员56人历年高频500题难、易错点模拟试题附带答案详解
- 期末综合素质达标(试题)-2024-2025学年人教精通版英语五年级上册
- 全国职业院校技能大赛高职组(商务数据分析赛项)备赛试题库(含答案)
评论
0/150
提交评论