2023届重庆綦江区高一数学第一学期期末综合测试模拟试题含解析_第1页
2023届重庆綦江区高一数学第一学期期末综合测试模拟试题含解析_第2页
2023届重庆綦江区高一数学第一学期期末综合测试模拟试题含解析_第3页
2023届重庆綦江区高一数学第一学期期末综合测试模拟试题含解析_第4页
2023届重庆綦江区高一数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,集合,则等于A. B.C. D.2.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:),可得这个几何体的体积(单位:cm3)是A.4 B.5C.6 D.73.已知函数的图象如图所示,则函数的图象为A.B.C.D.4.若方程表示圆,则实数的取值范围是A. B.C. D.5.若,则()A. B.C. D.6.若函数y=f(x)图象上存在不同的两点A,B关于y轴对称,则称点对[A,B]是函数y=f(x)的一对“黄金点对”(注:点对[A,B]与[B,A]可看作同一对“黄金点对”).已知函数f(x)=,则此函数的“黄金点对“有()A.0对 B.1对C.2对 D.3对7.如图所示,在中,.若,,则()A. B.C. D.8.函数图像大致为()A. B.C. D.9.在某次测量中得到的样本数据如下:.若样本数据恰好是样本数据都加2后所得数据,则两样本的下列数字特征对应相同的是()A.众数 B.平均数C.标准差 D.中位数10.计算cos(-780°)的值是()A.- B.-C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线关于定点对称的直线方程是_________12.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是_________.13.已知不等式ax2+bx+2>0的解集为{x|-1<x<2},则不等式2x2+bx+a<0的解为______14.若,其中,则的值为______15.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______16.直线与平行,则的值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数(1)求的值;(2)当时,关于的方程有零点,求实数的取值范围18.已知函数(且)的图象过点(1)求的值.(2)若.(i)求的定义域并判断其奇偶性;(ii)求的单调递增区间.19.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度v(单位:m/s).其中(单位m/s)是喷流相对速度,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,称为“总质比”,已知A型火箭的喷流相对速度为2000m/s参考数据:,(1)当总质比为230时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度增加500m/s,记此时在材料更新和技术改进前的总质比为T,求不小于T的最小整数?20.设关于x二次函数(1)若,解不等式;(2)若不等式在上恒成立,求实数m的取值范围21.已知.(1)求函数的定义域;(2)判断函数的奇偶性,并加以说明;(3)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,=2、A【解析】如图三视图复原的几何体是底面为直角梯形,是直角梯形,,一条侧棱垂直直角梯形的直角顶点的四棱锥,即平面所以几何体的体积为:故选A【点睛】本题考查几何体的三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键3、A【解析】根据函数的图象,可得a,b的范围,结合指数函数的性质,即可得函数的图象.【详解】解:通过函数的图象可知:,当时,可得,即.函数是递增函数;排除C,D.当时,可得,,,故选A【点睛】本题考查了指数函数的图象和性质,属于基础题.4、A【解析】由二元二次方程表示圆的充要条件可知:,解得,故选A考点:圆的一般方程5、A【解析】利用作为分段点进行比较,从而确定正确答案.【详解】,所以.故选:A6、D【解析】根据“黄金点对“,只需要先求出当x<0时函数f(x)关于y轴对称的函数的解析式,再作出函数的图象,利用两个图象交点个数进行求解即可【详解】由题意知函数f(x)=2x,x<0关于y轴对称的函数为,x>0,作出函数f(x)和,x>0的图象,由图象知当x>0时,f(x)和y=()x,x>0的图象有3个交点所以函数f(x)的““黄金点对“有3对故选D【点睛】本题主要考查分段函数的应用,结合“黄金点对“的定义,求出当x<0时函数f(x)关于y轴对称的函数的解析式,作出函数的图象,利用数形结合是解决本题的关键7、C【解析】根据.且,,利用平面向量的加法,减法和数乘运算求解.【详解】因为.且,,所以,,,.故选:C8、C【解析】先分析给定函数的奇偶性,排除两个选项,再在x>0时,探讨函数值正负即可判断得解.【详解】函数的定义域为,,即函数是定义域上的奇函数,其图象关于原点对称,排除选项A,B;x>0时,,而,则有,显然选项D不满足,C符合要求.故选:C9、C【解析】分别求两个样本的数字特征,再判断选项.【详解】A样本数据是:,样本数据是:,A样本的众数是48,B样本的众数是50,故A错;A样本的平均数是,B样本的平均数是,故B错;A样本的标准差B样本的标准差,,故C正确;A样本的中位数是,B样本的中位数是,故D错.故选:C10、C【解析】直接利用诱导公式以及特殊角的三角函数求解即可【详解】cos(-780°)=cos780°=cos60°=故选C【点睛】本题考查余弦函数的应用,三角函数的化简求值,考查计算能力二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出原直线上一个点关于定点的对称点,然后用对称后的直线与原直线平行【详解】在直线上取点,点关于的对称点为过与原直线平行的直线方程为,即为对称后的直线故答案为:12、(0,1)【解析】将方程的零点问题转化成函数的交点问题,作出函数的图象得到m的范围【详解】令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)与y=m的图象,要使函数g(x)=f(x)﹣m有3个零点,则y=f(x)与y=m的图象有3个不同的交点,所以0<m<1,故答案为(0,1)【点睛】本题考查等价转化的能力、利用数形结合思想解题的思想方法是重点,要重视13、【解析】不等式的解集为{x|-1<x<2},可得-1,2是一元二次方程的两个实数根,且a<0,利用根与系数的关系可得a,b,即可得出【详解】解:∵不等式的解集为{x|-1<x<2},∴-1,2是一元二次方程的两个实数根,且a<0,解得解得a=-1,b=1.则不等式化为,解得.不等式的解集为.故答案为.【点睛】本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,考查了计算能力,属于中档题14、;【解析】因为,所以点睛:三角函数求值三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.15、①.②.【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.16、【解析】根据两直线平行得出实数满足的等式与不等式,解出即可.【详解】由于直线与平行,则,解得.故答案为:.【点睛】本题考查利用两直线平行求参数,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用函数为奇函数所以即得的值(2)方程有零点,转化为求的值域即可得解.试题解析:(1)∵,∴,∴(2)∵,∴,∵,∴,∴,∴18、(1);(2)(i)定义域为,是偶函数;(ii).【解析】(1)由可求得实数的值;(2)(i)根据对数的真数大于零可得出关于实数的不等式,由此可解得函数的定义域,然后利用函数奇偶性的定义可证明函数为偶函数;(ii)利用复合函数法可求得函数的增区间.【详解】(1)由条件知,即,又且,所以;(2).(i)由得,故的定义域为.因为,故是偶函数;(ii),因为函数单调递增,函数在上单调递增,故的单调递增区间为.19、(1)m/s(2)45【解析】(1)运用代入法直接求解即可;(2)根据题意列出不等式,结合对数的运算性质和已知题中所给的参考数据进行求解即可.【小问1详解】当总质比为230时,,即A型火箭的最大速度为.【小问2详解】A型火箭的喷流相对速度提高到了原来的1.5倍,所以A型火箭的喷流相对速度为,总质比为,由题意得:因为,所以,即,所以不小于T的最小整数为4520、(1);(2).【解析】(1)由题设有,解一元二次不等式求解集即可.(2)由题意在上恒成立,令并讨论m范围,结合二次函数的性质求参数范围.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论