![2023届湖北省孝感市八校高一上数学期末复习检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/d12c80c56354fb11111931674be53f1e/d12c80c56354fb11111931674be53f1e1.gif)
![2023届湖北省孝感市八校高一上数学期末复习检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/d12c80c56354fb11111931674be53f1e/d12c80c56354fb11111931674be53f1e2.gif)
![2023届湖北省孝感市八校高一上数学期末复习检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/d12c80c56354fb11111931674be53f1e/d12c80c56354fb11111931674be53f1e3.gif)
![2023届湖北省孝感市八校高一上数学期末复习检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/d12c80c56354fb11111931674be53f1e/d12c80c56354fb11111931674be53f1e4.gif)
![2023届湖北省孝感市八校高一上数学期末复习检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/d12c80c56354fb11111931674be53f1e/d12c80c56354fb11111931674be53f1e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.32.已知实数满足方程,则的最小值和最大值分别为()A.-9,1 B.-10,1C.-9,2 D.-10,23.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是()A. B.C. D.4.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg3≈048)A.1033 B.1053C.1073 D.10935.已知函数,下面关于说法正确的个数是()①的图象关于原点对称②的图象关于y轴对称③的值域为④在定义域上单调递减A.1 B.2C.3 D.46.已知向量满足,,则A.4 B.3C.2 D.07.已知,,,则,,三者的大小关系是()A. B.C. D.8.函数在的图象大致为A. B.C. D.9.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息()元.(参考数据:)A.176 B.100C.77 D.8810.已知函数,且函数恰有三个不同的零点,则实数的取值范围是A. B.C. D.11.设函数,对于满足的一切值都有,则实数的取值范围为A B.C. D.12.设,且,则()A. B.10C.20 D.100二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设,且,则的取值范围是________.14.设函数在区间上的最大值和最小值分别为M、m,则___________.15.已知角A为△ABC的内角,cosA=-4516.如图,在空间四边形中,平面平面,,,且,则与平面所成角的度数为________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,(其中,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最高点为.(1)求函数的解析式;(2)先把函数的图象向左平移个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若总存在,使得不等式成立,求实数的最小值.18.果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.149161(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?19.若存在实数、使得,则称函数为、的“函数”(1)若.为、的“函数”,其中为奇函数,为偶函数,求、的解析式;(2)设函数,,是否存在实数、使得为、的“函数”,且同时满足:①是偶函数;②的值域为.若存在,请求出、的值;若不存在,请说明理由.(注:为自然数.)20.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m的方程.21.已知函数(,)(1)若关于的不等式的解集为,求不等式的解集;(2)若,,求关于的不等式的解集22.已知函数的部分图象如图所示.(1)求函数的解析式:(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度,得到函数的图象,求在上的值域
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题2、A【解析】即为y-2x可看作是直线y=2x+b在y轴上的截距,当直线y=2x+b与圆相切时,纵截距b取得最大值或最小值,此时,解得b=-9或1.所以y-2x的最大值为1,最小值为-9故选A.3、B【解析】结合指数函数和对数函数的图像即可.【详解】是定义域为R的增函数,:-x>0,则x<0.结合选项只有B符合故选:B4、D【解析】设,两边取对数,,所以,即最接近,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令,并想到两边同时取对数进行求解,对数运算公式包含,,.5、B【解析】根据函数的奇偶性定义判断为奇函数可得对称性,化简解析式,根据指数函数的性质可得单调性和值域.【详解】因为的定义域为,,即函数为奇函数,所以函数的图象关于原点对称,即①正确,②不正确;因为,由于单调递减,所以单调递增,故④错误;因为,所以,,即函数的值域为,故③正确,即正确的个数为2个,故选:B.【点睛】关键点点睛:理解函数的奇偶性和常见函数单调性简单的判断方式.6、B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因所以选B.点睛:向量加减乘:7、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C8、C【解析】当时,,去掉D;当时,,去掉B;因为,所以去A,选C.点睛:(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.9、B【解析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案【详解】由题意,某同学有压岁钱1000元,存入银行,年利率为2.25%,若在银行存放5年,可得金额为元,即利息为元,若放入微信零钱通或者支付宝的余额宝时,利率可达4.01%,若存放5年,可得金额为元,即利息为元,所以将这1000元选择合适方式存满5年,可以多获利息元,故选B【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题10、A【解析】函数恰有三个不同的零点等价于与有三个交点,再分别画出和的图像,通过观察图像得出a的范围.【详解】解:方程所以函数恰有三个不同的零点等价于与有三个交点记,画出函数简图如下画出函数如图中过原点虚线l,平移l要保证图像有三个交点,向上最多平移到l’位置,向下平移一直会有三个交点,所以,即故选A.【点睛】本题考查了函数的零点问题,解决函数零点问题常转化为两函数交点问题11、D【解析】用分离参数法转化为求函数的最大值得参数范围【详解】满足的一切值,都有恒成立,,对满足的一切值恒成立,,,时等号成立,所以实数的取值范围为,故选:D.12、A【解析】根据指数式与对数的互化和对数的换底公式,求得,,进而结合对数的运算公式,即可求解.【详解】由,可得,,由换底公式得,,所以,又因为,可得故选:A.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由题意得,,又因为,则的取值范围是14、2【解析】,令,易得函数为奇函数,则,从而可得出答案.【详解】解:,令,因为,所以函数为奇函数,所以,即,所以,即.故答案为:2.15、35【解析】根据同角三角函数的关系,结合角A的范围,即可得答案.【详解】因为角A为△ABC的内角,所以A∈(0,π),因为cosA=-所以sinA=故答案为:316、【解析】首先利用面面垂直转化出线面垂直,进一步求出线面的夹角,最后通过解直角三角形求出结果.【详解】取BD中点O,连接AO,CO.因为AB=AD,所以,又平面平面,所以平面.因此,即为AC与平面所成的角,由于,,所以,又,所以【点睛】本题主要考查直线与平面所成的角,属于基础题型.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)根据相邻两个交点之间的距离为可求出,由图像上一个最高点为可求出,,从而得到函数的解析式;(2)根据三角变换法则可得,再求出在上的最小值,利用对数函数的单调性即可求出实数的最小值【详解】(1)∵,∴,解得.又函数图象上一个最高点为,∴,(),∴(),又,∴,∴(2)把函数的图象向左平移个单位长度,得到;然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,即,∵,∴,,依题意知,,∴,即实数的最小值为.18、(1)更适合作为与的函数模型(2)果树数量为时年利润最大【解析】(1)将点代入和,求出两个函数,然后将和代入,看哪个算出的数据接近实际数据哪个就更适合作为与的函数模型.(2)根据(1)可得,利用二次函数的性质求最大利润.【小问1详解】①若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,与表格中的和相差较大,所以不适合作为与的函数模型.②若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,刚好与表格中的和相符合,所以更适合作为与的函数模型.【小问2详解】由题可知,该果园最多120000棵该吕种果树,所以确定的取值范围为,令,则经计算,当时,取最大值(万元),即,时(每亩约38棵),利润最大.19、(1),;(2)存在;,.【解析】(1)由已知条件可得出关于、的等式组,由此可解得函数、的解析式;(2)由偶函数的定义可得出,由函数的值域结合基本不等式以及对数函数的单调性可求得的值,进而可求得的值,即可得解.【小问1详解】解:因为为、的“函数”,所以①,所以因为为奇函数,为偶函数,所以,所以②联立①②解得,【小问2详解】解:假设存在实数、,使得为,的“函数”则①因为是偶函数,所以即,即,因为,整理得因为对恒成立,所②,因为,当且仅当,即时取等号所以,由于的值域为,所以,且又因为,所以,综上,存在,满足要求20、(1);(2).【解析】(1)将直线变形为斜截式即可得斜率;(2)由平行可得斜率,再由点斜式可得结果.【详解】(1)由,可得,所以斜率为;(2)由直线m与平行,且过点,可得m的方程为,整理得:.21、(1)(2)当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为【解析】(1)根据题意可得,且,3是方程的两个实数根,利用韦达定理得到方程组,求出,,进一步可得不等式等价于,即,最后求解不等式即可;(2)当时,时,不等式等价于,从而分类讨论,,三种情况即可求出不等式所对应的解集【小问1详解】解:的不等式的解集为,,且,3是方程的两个实数根,,,解得,,不等式等价于,即,故,解得或,所以该不等式的解集为;【小问2详解】解:当时,不等式等价于,即,又,所以不等式等价于,当,即时,不等式为,解得;当,即时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华杰东方装修合同范本
- 加工合同范例
- 个人吊顶包工合同范本
- 个人购平房合同范例
- 家具维修与居民生活品质改善策略研究考核试卷
- 华夏保险合同范本
- 医药制造业高效供应链与库存管理考核试卷
- 建筑物外墙清洗保养考核试卷
- 债权买卖合同范本
- 电商平台中品牌建设与营销策略的融合研究
- 山西省大同市基层诊所医疗机构卫生院社区卫生服务中心村卫生所室地址信息
- 项目部、公司成本管理流程图
- CCAA 基于风险的认证合规管理-认证档案质量管理的风险控制
- 高中英语选择性必修二 Unit 1 Period 1 Reading and thinking(课件)(共38张)
- 小学生电子小报通用模板-A4电子小报15
- CAS云计算软件平台深入介绍
- 课堂教学方法与手段(课堂PPT)课件(PPT 16页)
- 固定资产投资统计培训PPT课件
- 一年级上册必背古诗
- 平顶山第四届名师名班主任名校长培养方案
- 蒸压加气混凝土砌块作业指导书(共14页)
评论
0/150
提交评论