




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-.z.初二整式的乘法与因式分解所有知识点总结和常考题知识点:1.根本运算:⑴同底数幂的乘法:⑵幂的乘方:⑶积的乘方:2.整式的乘法:⑴单项式单项式:系数系数,同字母同字母,不同字母为积的因式.⑵单项式多项式:用单项式乘以多项式的每个项后相加.⑶多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:⑵完全平方公式:;4.整式的除法:⑴同底数幂的除法:⑵单项式单项式:系数系数,同字母同字母,不同字母作为商的因式.⑶多项式单项式:用多项式每个项除以单项式后相加.⑷多项式多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:②完全平方公式:③立方和:④立方差:⑶十字相乘法:⑷拆项法⑸添项法常考题:一.选择题〔共12小题〕1.以下运算中,结果正确的选项是〔〕A.*3•*3=*6 B.3*2+2*2=5*4 C.〔*2〕3=*5 D.〔*+y〕2=*2+y22.计算〔ab2〕3的结果是〔〕A.ab5 B.ab6 C.a3b5 D.a3b63.计算2*2•〔﹣3*3〕的结果是〔〕A.﹣6*5 B.6*5 C.﹣2*6 D.2*64.以下各式由左边到右边的变形中,是分解因式的为〔〕A.a〔*+y〕=a*+ay B.*2﹣4*+4=*〔*﹣4〕+4C.10*2﹣5*=5*〔2*﹣1〕 D.*2﹣16+3*=〔*﹣4〕〔*+4〕+3*5.以下多项式中能用平方差公式分解因式的是〔〕A.a2+〔﹣b〕2 B.5m2﹣20mn C.﹣*2﹣y2 D.﹣*2+96.以下各式中能用完全平方公式进展因式分解的是〔〕A.*2+*+1 B.*2+2*﹣1 C.*2﹣1 D.*2﹣6*+97.以下因式分解错误的选项是〔〕A.*2﹣y2=〔*+y〕〔*﹣y〕 B.*2+6*+9=〔*+3〕2 C.*2+*y=*〔*+y〕 D.*2+y2=〔*+y〕28.把代数式a*2﹣4a*+4a分解因式,以下结果中正确的选项是〔〕A.a〔*﹣2〕2 B.a〔*+2〕2 C.a〔*﹣4〕2 D.a〔*+2〕〔*﹣2〕9.如〔*+m〕与〔*+3〕的乘积中不含*的一次项,则m的值为〔〕A.﹣3 B.3 C.0 D.110.在边长为a的正方形中挖去一个边长为b的小正方形〔a>b〕〔如图甲〕,把余下的局部拼成一个矩形〔如图乙〕,根据两个图形中阴影局部的面积相等,可以验证〔〕A.〔a+b〕2=a2+2ab+b2 B.〔a﹣b〕2=a2﹣2ab+b2C.a2﹣b2=〔a+b〕〔a﹣b〕 D.〔a+2b〕〔a﹣b〕=a2+ab﹣2b211.图〔1〕是一个长为2a,宽为2b〔a>b〕的长方形,用剪刀沿图中虚线〔对称轴〕剪开,把它分成四块形状和大小都一样的小长方形,然后按图〔2〕那样拼成一个正方形,则中间空的局部的面积是〔〕A.ab B.〔a+b〕2 C.〔a﹣b〕2 D.a2﹣b212.如图,从边长为〔a+4〕cm的正方形纸片中剪去一个边长为〔a+1〕cm的正方形〔a>0〕,剩余局部沿虚线又剪拼成一个矩形〔不重叠无缝隙〕,则矩形的面积为〔〕A.〔2a2+5a〕cm2 B.〔6a+15〕cm2 C.〔6a+9〕cm2 D.〔3a+15〕cm2二.填空题〔共13小题〕13.分解因式:3*2﹣27=.14.分解因式:a2﹣1=.15.因式分解:*2﹣9y2=.16.分解因式:*3﹣4*=.17.因式分解:a3﹣ab2=.18.分解因式:*2+6*+9=.19.分解因式:2a2﹣4a+2=.20.分解因式:*3﹣6*2+9*=.21.分解因式:ab2﹣2ab+a=.22.分解因式:2a3﹣8a2+8a=.23.分解因式:3a2﹣12ab+12b2=.24.假设m2﹣n2=6,且m﹣n=2,则m+n=.25.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.三.解答题〔共15小题〕26.计算:〔*﹣y〕2﹣〔y+2*〕〔y﹣2*〕27.假设2*+5y﹣3=0,求4*•32y的值.28.:a+b=3,ab=2,求以下各式的值:〔1〕a2b+ab2〔2〕a2+b2.29.假设*+y=3,且〔*+2〕〔y+2〕=12.〔1〕求*y的值;〔2〕求*2+3*y+y2的值.30.先化简,再求值3a〔2a2﹣4a+3〕﹣2a2〔3a+4〕,其中a=﹣2.31.假设a2﹣2a+1=0.求代数式的值.32.分解因式:〔1〕2*2﹣*;〔2〕16*2﹣1;〔3〕6*y2﹣9*2y﹣y3;〔4〕4+12〔*﹣y〕+9〔*﹣y〕2.33.〔2a+b+1〕〔2a+b﹣1〕34.分解因式:*3﹣2*2y+*y2.35.分解因式:〔1〕a4﹣16;〔2〕*2﹣2*y+y2﹣9.36.分解因式*2〔*﹣y〕+〔y﹣*〕.37.分解因式〔1〕a2〔*﹣y〕+16〔y﹣*〕;〔2〕〔*2+y2〕2﹣4*2y2.38.因式分解〔1〕﹣8a*2+16a*y﹣8ay2;〔2〕〔a2+1〕2﹣4a2.39.因式分解:〔1〕3*﹣12*3〔2〕6*y2+9*2y+y3.40.假设*2+2*y+y2﹣a〔*+y〕+25是完全平方式,求a的值.初二整式的乘法与因式分解所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题〔共12小题〕1.〔2015•〕以下运算中,结果正确的选项是〔〕A.*3•*3=*6 B.3*2+2*2=5*4 C.〔*2〕3=*5 D.〔*+y〕2=*2+y2【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.【解答】解:A、*3•*3=*6,本选项正确;B、3*2+2*2=5*2,本选项错误;C、〔*2〕3=*6,本选项错误;D、〔*+y〕2=*2+2*y+y2,本选项错误,应选A【点评】此题考察了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解此题的关键.2.〔2008•〕计算〔ab2〕3的结果是〔〕A.ab5 B.ab6 C.a3b5 D.a3b6【分析】根据积的乘方的性质进展计算,然后直接选取答案即可.【解答】解:〔ab2〕3=a3•〔b2〕3=a3b6.应选D.【点评】此题考察积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.3.〔2011•呼和浩特〕计算2*2•〔﹣3*3〕的结果是〔〕A.﹣6*5 B.6*5 C.﹣2*6 D.2*6【分析】根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:2*2•〔﹣3*3〕,=2×〔﹣3〕•〔*2•*3〕,=﹣6*5.应选:A.【点评】此题主要考察单项式相乘的法则和同底数幂的乘法的性质.4.〔2005•〕以下各式由左边到右边的变形中,是分解因式的为〔〕A.a〔*+y〕=a*+ay B.*2﹣4*+4=*〔*﹣4〕+4C.10*2﹣5*=5*〔2*﹣1〕 D.*2﹣16+3*=〔*﹣4〕〔*+4〕+3*【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【解答】解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,*2﹣4*+4=〔*﹣2〕2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;应选:C.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.5.〔2017春•薛城区期末〕以下多项式中能用平方差公式分解因式的是〔〕A.a2+〔﹣b〕2 B.5m2﹣20mn C.﹣*2﹣y2 D.﹣*2+9【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】解:A、a2+〔﹣b〕2符号一样,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣*2﹣y2符号一样,不能用平方差公式分解因式,故C选项错误;D、﹣*2+9=﹣*2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.应选:D.【点评】此题考察用平方差公式分解因式的式子特点,两平方项的符号相反.6.〔2013•〕以下各式中能用完全平方公式进展因式分解的是〔〕A.*2+*+1 B.*2+2*﹣1 C.*2﹣1 D.*2﹣6*+9【分析】根据完全平方公式的特点:两项平方项的符号一样,另一项为哪一项两底数积的2倍,对各选项分析判断后利用排除法求解.【解答】解:A、*2+*+1不符合完全平方公式法分解因式的式子特点,故A错误;B、*2+2*﹣1不符合完全平方公式法分解因式的式子特点,故B错误;C、*2﹣1不符合完全平方公式法分解因式的式子特点,故C错误;D、*2﹣6*+9=〔*﹣3〕2,故D正确.应选:D.【点评】此题考察了用公式法进展因式分解,能用公式法进展因式分解的式子的特点需熟记.7.〔2009•眉山〕以下因式分解错误的选项是〔〕A.*2﹣y2=〔*+y〕〔*﹣y〕 B.*2+6*+9=〔*+3〕2 C.*2+*y=*〔*+y〕 D.*2+y2=〔*+y〕2【分析】根据公式特点判断,然后利用排除法求解.【解答】解:A、是平方差公式,故A选项正确;B、是完全平方公式,故B选项正确;C、是提公因式法,故C选项正确;D、〔*+y〕2=*2+2*y+y2,故D选项错误;应选:D.【点评】此题主要考察了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.8.〔2015•〕把代数式a*2﹣4a*+4a分解因式,以下结果中正确的选项是〔〕A.a〔*﹣2〕2 B.a〔*+2〕2 C.a〔*﹣4〕2 D.a〔*+2〕〔*﹣2〕【分析】先提取公因式a,再利用完全平方公式分解即可.【解答】解:a*2﹣4a*+4a,=a〔*2﹣4*+4〕,=a〔*﹣2〕2.应选:A.【点评】此题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.9.〔2016秋•南漳县期末〕如〔*+m〕与〔*+3〕的乘积中不含*的一次项,则m的值为〔〕A.﹣3 B.3 C.0 D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于*的同类项,令*的系数为0,得出关于m的方程,求出m的值.【解答】解:∵〔*+m〕〔*+3〕=*2+3*+m*+3m=*2+〔3+m〕*+3m,又∵乘积中不含*的一次项,∴3+m=0,解得m=﹣3.应选:A.【点评】此题主要考察了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.10.〔2009•内江〕在边长为a的正方形中挖去一个边长为b的小正方形〔a>b〕〔如图甲〕,把余下的局部拼成一个矩形〔如图乙〕,根据两个图形中阴影局部的面积相等,可以验证〔〕A.〔a+b〕2=a2+2ab+b2 B.〔a﹣b〕2=a2﹣2ab+b2C.a2﹣b2=〔a+b〕〔a﹣b〕 D.〔a+2b〕〔a﹣b〕=a2+ab﹣2b2【分析】第一个图形中阴影局部的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影局部是一个长是〔a+b〕,宽是〔a﹣b〕的长方形,面积是〔a+b〕〔a﹣b〕;这两个图形的阴影局部的面积相等.【解答】解:∵图甲中阴影局部的面积=a2﹣b2,图乙中阴影局部的面积=〔a+b〕〔a﹣b〕,而两个图形中阴影局部的面积相等,∴阴影局部的面积=a2﹣b2=〔a+b〕〔a﹣b〕.应选:C.【点评】此题主要考察了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.11.〔2013•枣庄〕图〔1〕是一个长为2a,宽为2b〔a>b〕的长方形,用剪刀沿图中虚线〔对称轴〕剪开,把它分成四块形状和大小都一样的小长方形,然后按图〔2〕那样拼成一个正方形,则中间空的局部的面积是〔〕A.ab B.〔a+b〕2 C.〔a﹣b〕2 D.a2﹣b2【分析】中间局部的四边形是正方形,表示出边长,则面积可以求得.【解答】解:中间局部的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是〔a﹣b〕2.应选:C.【点评】此题考察了列代数式,正确表示出小正方形的边长是关键.12.〔2012•枣庄〕如图,从边长为〔a+4〕cm的正方形纸片中剪去一个边长为〔a+1〕cm的正方形〔a>0〕,剩余局部沿虚线又剪拼成一个矩形〔不重叠无缝隙〕,则矩形的面积为〔〕A.〔2a2+5a〕cm2 B.〔6a+15〕cm2 C.〔6a+9〕cm2 D.〔3a+15〕cm2【分析】大正方形与小正方形的面积的差就是矩形的面积,据此即可求解.【解答】解:矩形的面积是:〔a+4〕2﹣〔a+1〕2=〔a+4+a+1〕〔a+4﹣a﹣1〕=3〔2a+5〕=6a+15〔cm2〕.应选B.【点评】此题考察了平方差公式的几何背景,理解大正方形与小正方形的面积的差就是矩形的面积是关键.二.填空题〔共13小题〕13.〔2015•〕分解因式:3*2﹣27=3〔*+3〕〔*﹣3〕.【分析】观察原式3*2﹣27,找到公因式3,提出公因式后发现*2﹣9符合平方差公式,利用平方差公式继续分解.【解答】解:3*2﹣27,=3〔*2﹣9〕,=3〔*+3〕〔*﹣3〕.故答案为:3〔*+3〕〔*﹣3〕.【点评】此题主要考察提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进展二次分解因式.14.〔2013•〕分解因式:a2﹣1=〔a+1〕〔a﹣1〕.【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2﹣b2=〔a+b〕〔a﹣b〕.【解答】解:a2﹣1=〔a+1〕〔a﹣1〕.故答案为:〔a+1〕〔a﹣1〕.【点评】此题主要考察平方差公式分解因式,熟记公式是解题的关键.15.〔2013•〕因式分解:*2﹣9y2=〔*+3y〕〔*﹣3y〕.【分析】直接利用平方差公式分解即可.【解答】解:*2﹣9y2=〔*+3y〕〔*﹣3y〕.【点评】此题主要考察利用平方差公式分解因式,熟记公式构造是解题的关键.16.〔2017•〕分解因式:*3﹣4*=*〔*+2〕〔*﹣2〕.【分析】应先提取公因式*,再对余下的多项式利用平方差公式继续分解.【解答】解:*3﹣4*,=*〔*2﹣4〕,=*〔*+2〕〔*﹣2〕.故答案为:*〔*+2〕〔*﹣2〕.【点评】此题考察了提公因式法,公式法分解因式,提取公因式后利用平方差公式进展二次因式分解,分解因式一定要彻底,直到不能再分解为止.17.〔2016•〕因式分解:a3﹣ab2=a〔a+b〕〔a﹣b〕.【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a〔a2﹣b2〕=a〔a+b〕〔a﹣b〕.【点评】此题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.此题考点:因式分解〔提取公因式法、应用公式法〕.18.〔2013•〕分解因式:*2+6*+9=〔*+3〕2.【分析】直接用完全平方公式分解即可.【解答】解:*2+6*+9=〔*+3〕2.【点评】此题考察了公式法分解因式,熟记完全平方公式法的构造特点是解题的关键.19.〔2017•〕分解因式:2a2﹣4a+2=2〔a﹣1〕2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2〔a2﹣2a+1〕=2〔a﹣1〕2.故答案为:2〔a﹣1〕2.【点评】此题考察了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.20.〔2015•〕分解因式:*3﹣6*2+9*=*〔*﹣3〕2.【分析】先提取公因式*,再对余下的多项式利用完全平方公式继续分解.【解答】解:*3﹣6*2+9*,=*〔*2﹣6*+9〕,=*〔*﹣3〕2.故答案为:*〔*﹣3〕2.【点评】此题考察提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进展二次分解因式.21.〔2008•〕分解因式:ab2﹣2ab+a=a〔b﹣1〕2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:ab2﹣2ab+a,=a〔b2﹣2b+1〕,=a〔b﹣1〕2.【点评】考察提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进展二次因式分解.22.〔2013•〕分解因式:2a3﹣8a2+8a=2a〔a﹣2〕2.【分析】先提取公因式2a,再对余下的多项式利用完全平方公式继续分解.【解答】解:2a3﹣8a2+8a,=2a〔a2﹣4a+4〕,=2a〔a﹣2〕2.故答案为:2a〔a﹣2〕2.【点评】此题考察了用提公因式法和公式法进展因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进展因式分解,同时因式分解要彻底,直到不能分解为止.23.〔2013•〕分解因式:3a2﹣12ab+12b2=3〔a﹣2b〕2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.【解答】解:3a2﹣12ab+12b2=3〔a2﹣4ab+4b2〕=3〔a﹣2b〕2.故答案为:3〔a﹣2b〕2.【点评】此题考察了用提公因式法和公式法进展因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进展因式分解,注意因式分解要彻底.24.〔2013•内江〕假设m2﹣n2=6,且m﹣n=2,则m+n=3.【分析】将m2﹣n2按平方差公式展开,再将m﹣n的值整体代入,即可求出m+n的值.【解答】解:m2﹣n2=〔m+n〕〔m﹣n〕=〔m+n〕×2=6,故m+n=3.故答案为:3.【点评】此题考察了平方差公式,比拟简单,关键是要熟悉平方差公式〔a+b〕〔a﹣b〕=a2﹣b2.25.〔2014•〕如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70.【分析】应把所给式子进展因式分解,整理为与所给周长和面积相关的式子,代入求值即可.【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab〔a+b〕=70.故答案为:70.【点评】此题既考察了对因式分解方法的掌握,又考察了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三.解答题〔共15小题〕26.〔2006•〕计算:〔*﹣y〕2﹣〔y+2*〕〔y﹣2*〕【分析】利用完全平方公式,平方差公式展开,再合并同类项.【解答】解:〔*﹣y〕2﹣〔y+2*〕〔y﹣2*〕,=*2﹣2*y+y2﹣〔y2﹣4*2〕,=*2﹣2*y+y2﹣y2+4*2,=5*2﹣2*y.【点评】此题考察完全平方公式,平方差公式,属于根底题,熟记公式是解题的关键,去括号时要注意符号的变化.27.〔2013春•**期末〕假设2*+5y﹣3=0,求4*•32y的值.【分析】由方程可得2*+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.【解答】解:4*•32y=22*•25y=22*+5y∵2*+5y﹣3=0,即2*+5y=3,∴原式=23=8.【点评】此题考察了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.28.〔2009•〕:a+b=3,ab=2,求以下各式的值:〔1〕a2b+ab2〔2〕a2+b2.【分析】〔1〕把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;〔2〕利用完全平方公式把代数式化为的形式求解.【解答】解:〔1〕a2b+ab2=ab〔a+b〕=2×3=6;〔2〕∵〔a+b〕2=a2+2ab+b2∴a2+b2=〔a+b〕2﹣2ab,=32﹣2×2,=5.【点评】此题考察了提公因式法分解因式,完全平方公式,关键是将原式整理成条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.29.〔2015•张家港市模拟〕假设*+y=3,且〔*+2〕〔y+2〕=12.〔1〕求*y的值;〔2〕求*2+3*y+y2的值.【分析】〔1〕先去括号,再整体代入即可求出答案;〔2〕先变形,再整体代入,即可求出答案.【解答】解:〔1〕∵*+y=3,〔*+2〕〔y+2〕=12,∴*y+2*+2y+4=12,∴*y+2〔*+y〕=8,∴*y+2×3=8,∴*y=2;〔2〕∵*+y=3,*y=2,∴*2+3*y+y2=〔*+y〕2+*y=32+2=11.【点评】此题考察了整式的混合运算和完全平方公式的应用,题目是一道比拟典型的题目,难度适中.30.〔2014秋•德惠市期末〕先化简,再求值3a〔2a2﹣4a+3〕﹣2a2〔3a+4〕,其中a=﹣2.【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入的数值计算即可.【解答】解:3a〔2a2﹣4a+3〕﹣2a2〔3a+4〕=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.【点评】此题考察了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.31.〔2007•〕假设a2﹣2a+1=0.求代数式的值.【分析】根据完全平方公式先求出a的值,再代入求出代数式的值.【解答】解:由a2﹣2a+1=0得〔a﹣1〕2=0,∴a=1;把a=1代入=1+1=2.故答案为:2.【点评】此题考察了完全平方公式,灵活运用完全平方公式先求出a的值,是解决此题的关键.32.〔2012春•郯城县期末〕分解因式:〔1〕2*2﹣*;〔2〕16*2﹣1;〔3〕6*y2﹣9*2y﹣y3;〔4〕4+12〔*﹣y〕+9〔*﹣y〕2.【分析】〔1〕直接提取公因式*即可;〔2〕利用平方差公式进展因式分解;〔3〕先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;〔4〕把〔*﹣y〕看作整体,利用完全平方公式分解因式即可.【解答】解:〔1〕2*2﹣*=*〔2*﹣1〕;〔2〕16*2﹣1=〔4*+1〕〔4*﹣1〕;〔3〕6*y2﹣9*2y﹣y3,=﹣y〔9*2﹣6*y+y2〕,=﹣y〔3*﹣y〕2;〔4〕4+12〔*﹣y〕+9〔*﹣y〕2,=[2+3〔*﹣y〕]2,=〔3*﹣3y+2〕2.【点评】此题考察了提公因式法与公式法分解因式,是因式分解的常用方法,难点在〔3〕,提取公因式﹣y后,需要继续利用完全平方公式进展二次因式分解.33.〔2011春•乐平市期中〕〔2a+b+1〕〔2a+b﹣1〕【分析】把〔2a+b〕看成整体,利用平方差公式和完全平方公式计算后整理即可.【解答】解:〔2a+b+1〕〔2a+b﹣1〕,=〔2a+b〕2﹣1,=4a2+4ab+b2﹣1.【点评】此题考察了平方差公式和完全平方公式的运用,构造成公式构造是利用公式的关键,需要熟练掌握并灵活运用.34.〔2009•贺州〕分解因式:*3﹣2*2y+*y2.【分析】先提取公因式*,再利用完全平方公式分解因式.完全平方公式:a2±2ab+b2=〔a±b〕2;【解答】解:*3﹣2*2y+*y2,=*〔*2﹣2*y+y2〕,=*〔*﹣y〕2.【点评】主要考察提公因式法分解因式和利用完全平方公式分解因式,此题难点在于要进展二次分解.35.〔2011•雷州市校级一模〕分解因式:〔1〕a4﹣16;〔2〕*2﹣2*y+y2﹣9.【分析】〔1〕两次运用平方差公式分解因式;〔2〕前三项一组,先用完全平方公式分解因式,再与第四项利用平方差公式进展分解.【解答】解:〔1〕a4﹣16=〔a2〕2﹣42,=〔a2﹣4〕〔a2+4〕,=〔a2+4〕〔a+2〕〔a﹣2〕;〔2〕*2﹣2*y+y2﹣9,=〔*2﹣2*y+y2〕﹣9,=〔*﹣y〕2﹣32,=〔*﹣y﹣3〕〔*﹣y+3〕.【点评】〔1〕关键在于需要两次运用平方差公式分解因式;〔2〕主要考察分组分解法分解因式,分组的关键是两组之间可以继续分解因式.36.〔2008春•利川市期末〕分解因式*2〔*﹣y〕+〔y﹣*〕.【分析】显然只需将y﹣*=﹣〔*﹣y〕变形后,即可提取公因式〔*﹣y〕,然后再运用平方差公式继续分解因式.【解答】解:*2〔*﹣y〕+〔y﹣*〕,=*2〔*﹣y〕﹣〔*﹣y〕,=〔*﹣y〕〔*2﹣1〕,=〔*﹣y〕〔*﹣1〕〔*+1〕.【点评】此题考察了用提公因式法和公式法进展因式分解,一个多项式有公因式首先提取公因式,然后再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60826:2003 EN-D Design criteria of overhead transmission lines
- 【正版授权】 IEC 60870-5-104:2006 EN-D Telecontrol equipment and systems - Part 5-104: Transmission protocols - Network access for IEC 60870-5-101 using standard transport profiles
- 护理导论与护理程序
- 酱香酒知识培训课件
- 糖尿病及护理
- 心脏外科护理手术配合
- 妊娠期糖尿病护理
- 2025年庆八一建军节主题活动方案策划书
- 2025年精神文明建设工作方案
- 吸氧喉罩在气管切开中的护理
- 海南啤酒市场调查报告
- 文体中心项目可行性研究报告
- 三国群英传2-所有武将属性
- 氢气储存和运输 课件全套 第1-5章 氢气存储与运输概述- 材料基固态储运氢
- 城市地铁与轨道交通建设项目环境法规和标准包括适用的环境法规、政策和标准分析
- 幼儿园大班语言《骑着恐龙去上学》课件
- 智慧双碳管理云平台建设方案
- 2023持续炎症-免疫抑制-分解代谢综合征(PICS)
- 2023年江苏省南京市鼓楼区中考道德与法治一模试卷及答案解析
- 炎症性肠病知识讲座
- 法医学智慧树知到答案章节测试2023年中南大学
评论
0/150
提交评论