




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知,则的最大值为()A. B.C.0 D.22.今有一组实验数据如下:x23456y1.52.012.985.028.98现准备用下列函数中的一个近似地表示这些数据所满足的规律,其中最接近的一个是()A. B.C. D.3.给出下列命题:①函数为偶函数;②函数在上单调递增;③函数在区间上单调递减;④函数与的图像关于直线对称.其中正确命题的个数是()A.1 B.2C.3 D.44.已知是第二象限角,,则()A. B.C. D.5.在空间直角坐标系中,一个三棱锥的顶点坐标分别是,,,.则该三棱锥的体积为()A. B.C. D.26.如图所示,是顶角为的等腰三角形,且,则A. B.C. D.7.下列说法错误的是()A.球体是旋转体 B.圆柱的母线垂直于其底面C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台8.下列函数中是增函数的为()A. B.C. D.9.已知函数的图象经过点,则的值为()A. B.C. D.10.若函数分别是上的奇函数、偶函数,且满足,则有()A. B.C. D.11.公元263年左右,我国数学有刘徽发现当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.某同学利用刘徽的“割圆术”思想设计了一个计算圆周率的近似值的程序框图如图,则输出S的值为(参考数据:)A.2.598 B.3.106C.3.132 D.3.14212.平面与平面平行的条件可以是()A.内有无穷多条直线与平行 B.直线,C.直线,直线,且, D.内的任何直线都与平行二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,若,则_______;若,则实数的取值范围是__________14.已知集合,,且,则实数的取值范围是__________15.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是________16.(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.(1)A′C⊥BD.(2)∠BA′C=90°.(3)CA′与平面A′BD所成的角为30°.(4)四面体A′-BCD的体积为.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.某产品在出厂前需要经过质检,质检分为2个过程.第1个过程,将产品交给3位质检员分别进行检验,若3位质检员检验结果均为合格,则产品不需要进行第2个过程,可以出厂;若3位质检员检验结果均为不合格,则产品视为不合格产品,不可以出厂;若只有1位或2位质检员检验结果为合格,则需要进行第2个过程.第2个过程,将产品交给第4位和第5位质检员检验,若这2位质检员检验结果均为合格,则可以出厂,否则视为不合格产品,不可以出厂.设每位质检员检验结果为合格的概率均为,且每位质检员的检验结果相互独立(1)求产品需要进行第2个过程的概率;(2)求产品不可以出厂的概率18.冰雪装备器材产业是冰雪产业的重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?19.已知函数,,.(1)若,解关于方程;(2)设,函数在区间上的最大值为3,求的取值范围;(3)当时,对任意,函数在区间上的最大值与最小值的差不大于1,求的取值范围.20.已知函数(为常数),在时取得最大值2.(1)求的解析式;(2)求函数在上单调区间和最小值.21.设a∈R,是定义在R上的奇函数,且.(1)试求的反函数的解析式及的定义域;(2)设,若时,恒成立,求实数k的取值范围.22.在三棱锥中,平面平面,,,分别是棱,上的点(1)为的中点,求证:平面平面.(2)若,平面,求的值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】把所求代数式变形,转化成,再对其中部分以基本不等式求最值即可解决.【详解】时,(当且仅当时等号成立)则,即的最大值为0.故选:C2、B【解析】根据表格中的数据,作出散点图,结合选项和函数的单调性,逐项判定,即可求解.【详解】根据表格中的数据,作出散点图,如图所示,根据散点图可知,随着的增大,的值增大,并且增长速度越来越快,结合选项:函数增长速度越来越缓慢,不符合题意;函数增长速度越来越快,符合题意;函数,增长速度不变,不符合题意;而函数,当时,可得;当时,可得,此时与真实数据误差较大,所以最接近的一个函数是.故选:B.3、C【解析】①函数为偶函数,因为是正确的;②函数在上单调递增,单调增是正确的;③函数是偶函数,在区间上单调递增,故选项不正确;④函数与互为反函数,根据反函数的概念得到图像关于对称.是正确的.故答案为C.4、B【解析】利用同角三角函数基本关系式求解.【详解】因为是第二象限角,,且,所以.故选:B.5、A【解析】由题,在空间直角坐标系中找到对应的点,进而求解即可【详解】由题,如图所示,则,故选:A【点睛】本题考查三棱锥的体积,考查空间直角坐标系的应用6、C【解析】【详解】∵是顶角为的等腰三角形,且∴∴故选C7、C【解析】利用空间几何体的结构特征可得.【详解】由旋转体的概念可知,球体是旋转体,故A正确;圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确;斜棱柱的侧面中可能有矩形,故C错误;用正棱锥截得的棱台叫做正棱台,故D正确.故选:C.8、D【解析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.9、C【解析】将点的坐标代入函数解析式,求出的值即可.【详解】因为函数的图象经过点,所以,则.故选:C.10、D【解析】函数分别是上的奇函数、偶函数,,由,得,,,解方程组得,代入计算比较大小可得.考点:函数奇偶性及函数求解析式11、C【解析】阅读流程图可得,输出值为:.本题选择C选项.点睛:识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构(2)要识别、运行程序框图,理解框图所解决的实际问题(3)按照题目要求完成解答并验证12、D【解析】由题意利用平面与平面平行的判定和性质,逐一判断各个选项是否正确,从而得出结论【详解】解:当内有无穷多条直线与平行时,与可能平行,也可能相交,故A错误当直线,时,与可能平行也可能相交,故B错误当直线,直线,且,,如果,都平行,的交线时满足条件,但是与相交,故C错误当内的任何直线都与平行时,由两个平面平行的定义可得,这两个平面平行,故D正确;故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,14、【解析】,是的子集,故.【点睛】本题主要考查集合的研究对象和交集的概念,考查指数不等式的求解方法,考查二次函数的值域等知识.对于一个集合,首先要确定其研究对象是什么元素,是定义域还是值域,是点还是其它的元素.二次函数的值域主要由开口方向和对称轴来确定.在解指数或对数不等式时,要注意底数对单调性的影响.15、(0,1)【解析】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可.【详解】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可,实数m满足不等式组解得0<m<1.故答案为(0,1)【点睛】这个题目考查了二次函数根的分布的问题,结合二次函数的图像的性质即可得到结果,题型较为基础.16、(2)(4)【解析】详解】若A′C⊥BD,又BD⊥CD,则BD⊥平面A′CD,则BD⊥A′D,显然不可能,故(1)错误.因为BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,所以BA′⊥A′C,所以∠BA′C=90°,故(2)正确.因为平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,CA′与平面A′BD所成的角为∠CA′D,因为A′D=CD,所以∠CA′D=,故(3)错误.四面体A′-BCD的体积为V=S△BDA′·h=××1=,因为AB=AD=1,DB=,所以A′C⊥BD,综上(2)(4)成立.点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)分在第1个过程中,1或2位质检员检验结果为合格两种情况讨论,根据相互独立事件及互斥事件的概率公式计算可得;(2)首先求出在第1个过程中,3位质检员检验结果均为不合格的概率,再求出产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,最后根据互斥事件的概率公式计算可得;【小问1详解】解:记事件A为“产品需要进行第2个过程”在第1个过程中,1位质检员检验结果为合格的概率,在第1个过程中,2位质检员检验结果为合格的概率,故【小问2详解】解:记事件B为“产品不可以出厂”在第1个过程中,3位质检员检验结果均为不合格概率,产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,故18、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.19、(1);(2);(3).【解析】(1)将代入函数的解析式,并求出函数的定义域,利用对数的运算法则可解出方程;(2)当时,,分、和三种情况讨论,去绝对值,分析函数在区间上的单调性,结合该函数在区间上的最大值为,可求出实数的取值范围;(3)利用对数的运算性质可得出,可知该函数在区间上为减函数,由题意得出对任意的恒成立,求出在上的最大值,即可得出实数的取值范围.【详解】(1)当时,,则,定义域为.由,可得,可得,解得或(舍去),因此,关于的方程的解为;(2)当时,.当时,对任意的恒成立,则,此时,函数在区间上为增函数,,合乎题意;当时,对任意的恒成立,则,此时,函数在区间上为减函数,,解得,不合乎题意;当时,令,得,此时,所以,函数在区间上为减函数,在区间上为增函数.,,由于,所以,解得.此时,.综上所述,实数的取值范围是;(3),由于内层函数在区间为减函数,外层函数为增函数,所以,函数在区间上为减函数,所以,,由题意可得,可得,所以,.①当时,;②当时,令,设,可得.下面利用定义证明函数在区间上的单调性,任取、且,即,,,,,,即,所以,函数在区间上单调递减,当时,函数取得最大值.综上所述,函数在上的最大值为,.因此,实数的取值范围是.【点睛】本题考查对数方程的求解、考查了利用带绝对值函数的最值求参数,同时也考查了函数不等式恒成立问题,考查运算求解能力,属于中等题.20、(1);(2)的单调增区间为,单调减区间为,.【解析】(1)根据对称轴方程为,及最大值为可列出关于的方程组,解方程组可得的值,从而可得结果;(2)根据(1)的结论可知,开口向上的抛物线对称轴在内,结合二次函数的图象可得的单调增区间为,单调减区间为.【详解】(1)由题意知,∴,∴.(2)∵,∴当时,的单调增区间为,单调减区间为,又,∴最小值为.21、(1);(2).【解析】(1)根据函数的奇偶性求出的值,结合反函数的概念求出,利用指数函数的性质求出的取值范围即可;(2)由对数函数概念可得,将原问题转化为在恒成立,结合二次函数的性质即可得出结果.【小问1详解】因为为R上的奇函数,所以,即,解得,所以,为R上的奇函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 区块链技术创新驱动下的教育行业变革
- 半月板损伤的最好治疗
- 健康产业中的大数据应用与挑战分析
- 2025至2030中国速发酵母行业营销渠道与多元化经营战略规划报告
- 工程项目技术员个人工作总结(6篇)
- 2025学生会生活部工作计划(31篇)
- 银行个人述职报告怎样写(范文15篇)
- 前海人寿保险业务员工作总结(33篇)
- 区块链与金融科技的融合发展
- 以信任为基石推动行业创新-以教育领域为例的研究报告
- 温度传感器Pt100-阻值-温度对照表(方便实用)
- 《地球物理勘探》课件
- 河南省濮阳市清丰县2023-2024学年八年级上学期期中生物试题( 含答案解析 )
- 30道智能驾驶工程师岗位常见面试问题含HR问题考察点及参考回答
- 护林员劳务派遣投标方案(技术标)
- JGJT208-2010 后锚固法检测混凝土抗压强度技术规程
- 北师大版小学英语3-6年级单词-(三起)带音标-精华版
- 公共卫生概论课件
- 菌种计数记录
- 衡水介绍-衡水简介PPT(经典版)
- 电力建设施工现场安全文明施工标准化管理
评论
0/150
提交评论