




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.已知集合,则下列关系中正确的是()A. B.C. D.2.函数在一个周期内的图像如图所示,此函数的解析式可以是()A. B.C. D.3.若实数,满足,则关于的函数图象的大致形状是()A. B.C. D.4.在平行四边形ABCD中,E是CD中点,F是BE中点,若+=m+n,则()A., B.,C., D.,5.若,,,则a,b,c之间的大小关系是()A.c>b>a B.c>a>bC.a>c>b D.b>a>c6.设集合,,则()A B.C. D.7.()A.1 B.0C.-1 D.8.已知函数(其中)的图象如图所示,则函数的图像是()A. B.C. D.9.工艺扇面是中国书面一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为,外圆半径为,内圆半径为.则制作这样一面扇面需要的布料为().A. B.C. D.10.已知函数,则的值是()A. B.C. D.11.某地一年之内12个月的降水量从小到大分别为:46,48,51,53,53,56,56,56,58,64,66,71,则该地区的月降水量20%分位数和75%分位数为()A.51,58 B.51,61C.52,58 D.52,6112.如下图是一个正方体的平面展开图,在这个正方体中①②与成角③与为异面直线④以上四个命题中,正确的序号是A.①②③ B.②④C.③④ D.②③④二、填空题(本大题共4小题,共20分)13.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.14.函数的最大值为,其图象相邻两条对称轴之间的距离为(1)求函数的解析式;(2)设,且,求的值15.已知函数的最大值为,且图像的两条相邻对称轴之间的距离为,求:(1)函数的解析式;(2)当,求函数的单调递减区间16.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______三、解答题(本大题共6小题,共70分)17.已知的一条内角平分线的方程为,其中,(1)求顶点的坐标;(2)求的面积18.如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.(1)证明:平面;(2)证明:平面;(3)求三棱锥的体积.19.如图,是正方形,直线底面,,是的中点.(1)证明:直线平面;(2)求直线与平面所成角的正切值.20.已知不过第二象限的直线l:ax-y-4=0与圆x2+(y-1)2=5相切(1)求直线l的方程;(2)若直线l1过点(3,-1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程21.如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ)求证:;(Ⅱ)当且为的中点时,求与平面所成的角的大小.22.已知函数,,设(其中表示中的较小者).(1)在坐标系中画出函数的图像;(2)设函数的最大值为,试判断与1的大小关系,并说明理由.(参考数据:,,)
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】利用元素与集合、集合与集合的关系可判断各选项的正误.详解】∵,∴,所以选项A、B、D错误,由空集是任何集合的子集,可得选项C正确.故选:C.【点睛】本题考查元素与集合、集合与集合关系的判断,属于基础题.2、A【解析】根据图象,先确定以及周期,进而得出,再由求出,即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A3、B【解析】利用特殊值和,分别得到的值,利用排除法确定答案.【详解】实数,满足,当时,,得,所以排除选项C、D,当时,,得,所以排除选项A,故选:B.【点睛】本题考查函数图像的识别,属于简单题.4、B【解析】通过向量之间的关系将转化到平行四边形边上即可【详解】由题意可得,同理:,所以所以,故选B.【点睛】本题考查向量的线性运算,重点利用向量的加减进行转化,同时,利用向量平行进行代换5、C【解析】利用指数函数与对数函数的单调性即可得出【详解】∵a=22.5>1,<0,,∴a>c>b,故选C【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题6、C【解析】利用集合的交集运算求解.【详解】因为集合,,所以,故选:C7、A【解析】用诱导公式化简计算.【详解】因为,所以,所以原式.故选:A.【点睛】本题考查诱导公式,考查特殊角的三角函数值.属于基础题.8、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】由图象可知:,因为,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A9、B【解析】由扇形的面积公式,可得制作这样一面扇面需要的布料.【详解】解:根据题意,由扇形的面积公式可得:制作这样一面扇面需要的布料为.故选:B.【点睛】本题考查扇形的面积公式,考查学生的计算能力,属于基础题.10、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D11、B【解析】先把每月的降水量从小到大排列,再根据分位数的定义求解.【详解】把每月的降水量从小到大排列为:46,48,51,53,53,56,56,56,58,64,66,71,,所以该地区月降水量的分位数为;所以该地区的月降水量的分位数为.故选:B12、D【解析】由已知中正方体的平面展开图,得到正方体的直观图如上图所示:由正方体的几何特征可得:①不平行,不正确;
②AN∥BM,所以,CN与BM所成的角就是∠ANC=60°角,正确;③与不平行、不相交,故异面直线与为异面直线,正确;④易证,故,正确;故选D二、填空题(本大题共4小题,共20分)13、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.14、(1)(2)【解析】(1)根据函数的最值求出,由相邻两条对称轴之间的距离为,确定函数的周期,进而求出值;(2)由,求出,利用诱导公式结合的范围求出,的值,即可求出结论.【小问1详解】函数的最大值为5,所以A+1=5,即A=4∵函数图象的相邻两条对称轴之间的距离为,∴最小正周期T=π,∴ω=2故函数的解析式为.【小问2详解】,则由,则,所以所以15、(1);(2)和【解析】(1)根据降幂公式与辅助角公式化简函数解析式,然后由题意求解,从而求解出解析式;(2)根据(1)中的解析式,利用整体法代入化简计算函数的单调减区间,再由,给赋值,求出单调减区间.【小问1详解】化简函数解析式得,因为图像的两条相邻对称轴之间的距离为,即,且函数最大值为,所以且,得,所以函数解析式为.【小问2详解】由(1)得,,得,因为,所以函数的单调减区间为和16、[-,-)∪(,]【解析】利用周期与对称性得出f(x)的函数图象,根据交点个数列出不等式得出k的范围【详解】∵当x>2时,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期为1的函数,作出y=f(x)的函数图象如下:∵方程f(x)=kx恰有3个不同的根,∴y=f(x)与y=kx有三个交点,若k>0,则若k<0,由对称性可知.故答案为[-,-)∪(,].【点睛】本题考查了函数零点与函数图象的关系,函数周期与奇偶性的应用,方程根的问题常转化为函数图象的交点问题,属于中档题三、解答题(本大题共6小题,共70分)17、(1)点的坐标为.(2)24【解析】(1)先根据中点坐标公式以及直线垂直斜率的积等于列方程组求出点关于直线的对称点的坐标,根据两点式或点斜式可得直线的方程,与角平分线的方程联立可得顶点的坐标;(2)根据两点间的距离公式可得的值,再利用点到直线距离公式可得到直线:的距离,由三角形面积公式可得结果.试题解析:(1)由题意可得,点关于直线的对称点在直线上,则有解得,,即,由和,得直线的方程为,由得顶点的坐标为(2),到直线:的距离,故的面积为18、(1)见解析;(2)见解析;(3).【解析】(1)连接交于点,连接,利用中位线定理得出∥,故平面;(2)由⊥底面,得,结合得平面,于是,结合得平面,故而,结合,即可得出平面;;(3)依题意,可得试题解析:(1)连接交于点,连接∵底面是正方形,∴点是的中点又为的中点,∴∥又平面,平面,∴∥平面.(2)∵⊥底面,平面,∴∵底面是正方形,∴.又,平面,平面,∴平面.又平面,∴∵,是的中点,∴.又平面,平面,,∴平面.而平面∴.又,且,又平面,平面,∴平面.(Ⅲ)∵是的中点,.【点睛】本题考查了线面平行的判定,线面垂直的判定与性质,棱锥的体积计算.正确运用定理是证明的关键.19、(1)证明见解析;(2);【解析】(1)连接,由三角形中位线可证得,根据线面平行判定定理可证得结论;(2)根据线面角定义可知所求角为,且,由长度关系可求得结果.【详解】(1)连接,交于,连接四边形为正方形为中点,又为中点平面,平面平面(2)平面直线与平面所成角即为设,则【点睛】本题考查立体几何中线面平行关系的证明、直线与平面所成角的求解;证明线面平行关系常采用两种方法:(1)在平面中找到所证直线的平行线;(2)利用面面平行的性质证得线面平行.20、(1)2x-y-4=0(2)2x+y-9=0【解析】(1)利用直线l与圆x2+(y-1)2=5相切,,结合直线l不过第二象限,求出a,即可求直线l的方程;(2)直线l1的方程为2x-y+b=0,直线l1过点(3,-1),求出b,即可求出直线l1的方程;利用直线l2与l1关于y=1对称,求出直线的斜率,即可求直线l2的方程【详解】(1)∵直线l与圆x2+(y-1)2=5相切,∴,∵直线l不过第二象限,∴a=2,∴直线l的方程为2x-y-4=0;(2)∵直线l1过点(3,-1)且与直线l平行,∴直线l1方程为2x-y+b=0,∵直线l1过点(3,-1),∴b=-7,则直线l1的方程为2x-y-7=0,∵直线l2与l1关于y=1对称,∴直线l2的斜率为-2,且过点(4,1),∴直线l2的斜率为y-1=-2(x-4),即化简得2x+y-9=0【点睛】本题考查直线方程,考查直线与直线的位置关系,属于中档题21、(1)见解析(2)【解析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可【详解】(1)证明:∵底面ABCD是正方形∴AC⊥BD又PD⊥底面ABCDPD⊥AC所以AC⊥面PDB因此面AEC⊥面PDB(2)解:设AC与BD交于O点,连接EO则易得∠AEO为AE与面PDB所成的角∵E、O为中点∴EO=PD∴EO⊥AO∴在Rt△AEO中OE=PD=AB=AO∴∠AEO=45°即AE与面PDB所成角的大小为45°本题主要考查了直线与平面垂直的判定,以及直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电商企业品牌建设与推广策略
- 2025-2030年中国水土保持工程行业运营格局及发展趋势分析报告
- 2025-2030年中国橙汁市场发展现状及前景趋势分析报告
- 石墨行业技术创新对经济的影响分析
- 2025-2030年中国园林工具市场运行状况及前景趋势分析报告
- 雨季施工合同条款补充措施
- 2025-2030年中国不锈钢电器箱项目投资风险分析报告
- 2024工程承包合同范本2
- 超市购货合同范本
- 管洗净器租赁合同
- 2024版研学项目合作协议合同范本
- 2023-2024学年四川省眉山市东坡区七年级(上)期末数学试卷
- 有理数总复习市公开课一等奖省赛课微课金奖课件
- 幼儿园安全园本培训
- 化工装置管道设置紧急切断阀的依据规范(一)
- (高清版)DZT 0284-2015 地质灾害排查规范
- 七十岁老人三力测试题库答案
- 实验室仪器借用登记表
- 深圳职业技术学院申报国家示范院校项目汇报材料Pow
- 认识危险(小班安全第一课)-图文
- 2024年国家基本公卫-老年人健康管理-考试复习题库(含答案)
评论
0/150
提交评论