多相流动理论模型和数值方法-多相流在线课件_第1页
多相流动理论模型和数值方法-多相流在线课件_第2页
多相流动理论模型和数值方法-多相流在线课件_第3页
多相流动理论模型和数值方法-多相流在线课件_第4页
多相流动理论模型和数值方法-多相流在线课件_第5页
已阅读5页,还剩107页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章多相流动基础理论2.1.4多相流动理论模型和数值方法第二章多相流动基础理论2.1.4多相流动理论模型和数值方1特征时间流动时间(停留时间):扩散驰豫时间:平均运动驰豫时间:流体脉动时间:颗粒间碰撞时间:特征时间流动时间(停留时间):扩散驰豫时间:平均运动驰豫时间2无滑移流(平衡流)强滑移流(冻结流)扩散——冻结流扩散——平衡流稀疏悬浮流稠密悬浮流无滑移流(平衡流)3主要内容(气固多相流)

长期以来,气固两相流动的研究中按照对颗粒的处理方式不同,主要有两大类模型确定轨道模型随机轨道模型单颗粒动力学模型(SPD模型)颗粒轨道模型(PT模型)小滑移模型(SS模型)无滑移模型(NS模型)拟流体(多流体)模型(MF模型)离散介质模型连续介质模型主要内容(气固多相流)长期以来,气固两相流动的研究中按4本章要义

各种颗粒模型的一些基本观点颗粒相模型

基本观点

颗粒对流体的影响

相间滑移

坐标系

颗粒相输运性质

单颗粒动力学模型离散体系

不考虑

拉格朗日无,扩散冻结

颗粒轨道模型

离散体系考虑有拉格朗日无(确定轨道);有(随机轨道模型)

小滑移模型

连续介质

不考虑

有(滑移=扩散)

欧拉

有(扩散=滑移)

无滑移模型

连续介质

部分考虑无(动力学平衡,热力学平衡或冻结)

欧拉

有(扩散平衡)

拟流体(多流体)模型

连续介质

全部考虑有

欧拉

本章要义各种颗粒模型的一些基本观点颗粒相模型基本观点5按各种模型提出的时间大致顺序无滑移模型小滑移连续介质模型滑移-扩散的颗粒群模型分散颗粒群模型双流体模型颗粒轨道模型按各种模型提出的时间大致顺序无滑移模型小滑移连续介质模型滑移6拟流体模型(连续-连续介质模型)前提:在流体中弥散的颗粒相也是一种连续的流体;气相和颗粒相是两种相互渗透的连续相,各自满足连续性方程、动量方程和能量守恒方程。拟流体模型(连续-连续介质模型)前提:在流体中弥散的颗粒相也7无滑移模型(No-slipModel)颗粒群看作连续介质,颗粒群只有尺寸差别,不同尺寸代表不同相;颗粒与流体相间无相对速度;各颗粒相的湍流扩散系数取流体相扩散系数相等;相间相互作用等同于流体混合物间各成分相互作用,相间阻力不计。基本假设:无滑移模型(No-slipModel)颗粒群看作连续介质,8小滑移连续介质模型

(Soo-drewSlipModel)颗粒群看作连续介质,不同尺寸组代表不同相;各组尺寸颗粒群速度不等于当地的流体相速度,各颗粒相之间的速度亦不相等,即各颗粒相间、与流体相间有相对速度;相间的相互作用类似于流体混合物中各种组分之间的相互作用,颗粒相和流体相间的阻力忽略不计;颗粒的运动是由流体的运动而引起的,颗粒相的滑移是由于颗粒相对于多相流整体的湍流扩散所致,故这种小滑移也称为湍流飘移;多相混合物整体与各相之间的关系,仍类似于多组分流体混合物和各流体组分间的关系.基本假设:小滑移连续介质模型

(Soo-drewSlipModel9滑移-扩散的颗粒群模型

(Slip-diffusionModel)各相时均速度差异造成滑移的主要部分,由于各相的初始动量不同引起;扩散漂移造成滑移的小部分;空间各点各尺寸组的速度、尺寸、温度等物理参数均不相同。基本假设:滑移-扩散的颗粒群模型

(Slip-diffusionMo10拟流体模型小结无滑移模型:颗粒相的宏观运动而引起的质量迁移是由流体运动引起的;小滑移模型:混合物运动引起的滑移-扩散模型:颗粒相自身的宏观运动引起了质量迁移拟流体模型小结无滑移模型:颗粒相的宏观运动而引起的质量迁移是11拟流体模型数值方法拟流体模型数值方法12常用数值模拟方法传统模式理论直接模拟大涡模拟

离散涡方法格子气湍流流场数值模拟方法简介常用数值模拟方法传统模式理论直接模拟大涡模拟离散涡方法格子13双方程模型

非线性模型

多尺度模型

RNG模型

Reynolds应力模型(RSM)

代数应力模型(ASM)

FLT模型

SSG模型

湍流模式理论以Reynolds时均运动方程和脉动运动方程为基础,依靠理论与经验的接合,引进一系列模型假设,从而建立一组描写湍流平均量的方程组。

湍流模式理论简介双方程模型非线性模型多尺度14对经验数据的依赖性;将脉动运动的全部细节一律抹平从而丢失大量重要信息;目前各种模型,都只能适用于解决一种或者几种特定的湍流运动。

湍流模式理论局限性对经验数据的依赖性;湍流模式理论局限性15计算机发展数值算法发展直接模拟(DNS)技术的应用出现大型并行计算机Petaflops(1015)级有限差分有限元谱方法小波变换自适应网格并行计算技术方程本身是精确的,不含任何认为假设和经验常数,仅有的误差只是由数值方法引入的误差。计算包括脉动运动在内的湍流所有瞬时流动量在三维流场中的时间演变;不用任何湍流模型,直接数值求解完整的三维非定常的N-S方程组;

湍流直接模拟(DNS)简介计算机发展数值算法发展直接模拟(DNS)技术的应用出现大型16湍流旋涡结构包括大尺度涡和小尺度涡大尺度涡小尺度涡湍流流场涡结构图湍流旋涡结构包括大尺度涡和小尺度涡大尺度涡小尺度涡湍17直接模拟计算量太大,很难计算工程实际高雷诺数湍流流场。为什么要大涡模拟?湍流大涡模拟简介流场大尺度涡小尺度涡决定湍流流场的基本形态和性质;流场质量、能量的主要携带者;高度各向异性,无法建立统一模型。由大涡非线性作用产生;流场能量的主要耗散者;近似各向同性,可以考虑建立统一模型。小尺度涡对大涡的影响用模型进行模拟大涡模拟思想对大尺度涡进行直接模拟直接模拟计算量太大,很难计算工程实际高雷诺数湍流流场。为什18拟流体模型现状为了能更完整地考虑颗粒相各种湍流输运特性以及相间的滑移和耦合,Spalding等[1]首先提出了双流体模型。周力行教授对双流体模型进行了深入的研究。他们针对各向同性流动,提出了颗粒湍动能输运方程的模型[2]。针对各向异性流动,则将单相湍流流动的RSM模型推广至气固两相流中,提出了统一二阶矩模型(USM)[3]。拟流体模型现状为了能更完整地考虑颗粒相各种湍流输运特性以及相19拟流体模型现状概率密度函数(PDF)方法被引用于构造双流体模型的两相湍流模型。Reeks[4]从稳态流场中的颗粒运动方程出发,得到了颗粒相的PDF输运方程,同时还用PDF方法研究了近壁区颗粒的运动和自然边界条件的处理,克服了一般双流体模型难以描述的颗粒在壁面沉降、反弹过程的缺陷。Zaichik等[5]用Rurutsu-Novikov定理和泛函分析的方法,实现了采用PDF方法对流体湍流和颗粒相的模拟。拟流体模型现状概率密度函数(PDF)方法被引用于构造双流体模20拟流体模型现状Simonin[6]则运用流体涡团的Lagrangian模型来构造颗粒轨道上的流体涡团Lagrangian方程,从而得到了颗粒相的连续、动量和Reynolds应力方程。周力行教授等采用了二阶矩封闭的思路来封闭PDF输运方程中湍流与颗粒的相间作用项,将颗粒相的PDF模型与流体运动的各类模型相结合,提出了k—ε—PDF模型[7]和FDSM—PDF模型[8]。拟流体模型现状Simonin[6]则运用流体涡团的Lagra21双流体模型双流体模型22双流体模型固相压力固相的剪切粘度

固相的体积粘度固相的应力张量

气相牛顿粘性应力方程双流体模型固相压力固相的剪切粘度

固相的体积粘度固相的应力23多相流动理论模型和数值方法-多相流在线课件24离散颗粒模型确定轨道模型随机轨道模型单颗粒动力学模型(SPD模型)颗粒轨道模型(PT模型)…….共同特点气相颗粒相欧拉系拉格郎日系离散颗粒模型确定轨道模型随机轨道模型单颗粒动力学模型(SPD25不同之处单颗粒动力学模型颗粒轨道模型考虑已知流场中颗粒平均运动或对流运动的轨道,忽略颗粒对流场的影响。充分考虑气相和颗粒相间的相互作用。不同之处单颗粒动力学模型颗粒轨道模型考虑已知流场中颗粒平均运26分散颗粒群模型基本假设:在欧拉坐标系中考察流体相的运动情况,而在拉格朗日坐标系中研究颗粒群的运动情况。即把颗粒群按初始尺寸分组,各组颗粒沿其自身轨道运动。由于颗粒的蒸发、挥发及燃烧、流体的阻力作用和传热等原因,颗粒群沿轨道会发生速度、质量、温度、密度和尺寸的变化,同时对流体造成了分布于整个体积中的物质源、动量源和能量源。该方法能研究颗粒群和流体相之间的较大滑移,并把复杂的颗粒变化情况耦合进来。分散颗粒群模型基本假设:在欧拉坐标系中考察流体相的运动情况,27按照是否考虑颗粒群的湍流扩散,又可把颗粒轨道模型分为两类:一类是不考虑颗粒群湍流扩散的颗粒确定轨道模型,一类是考虑颗粒群湍流扩散的颗粒随机轨道模型。按照是否考虑颗粒群的湍流扩散,又可把颗粒轨道模型分为两类:一28颗粒确定轨道模型处理颗粒群的方法较简单,能够考虑相间速度与温度的滑移,并可以追踪比较复杂的颗粒经历,数值计算不会产生伪扩散。但其存在一个缺点,就是对颗粒的湍流扩散缺乏较好的处理。颗粒确定轨道模型处理颗粒群的方法较简单,能够考虑相间速度与温29考虑到湍流脉动对颗粒轨迹造成的影响,Yuu等[142]首先提出了涡作用模型。在经过Gosman等[143]和Berlemont等[144]改进以后,得到了广泛的应用。Sommerfeld[145]和Shuen[146]等采用此模型进行数值求解,得到了比较满意的结果。浙江大学热能工程研究所的岑可法院士和樊建人教授[147]提出的随机频谱颗粒轨道(FSRT)模型,颗粒随机轨道模型。考虑到湍流脉动对颗粒轨迹造成的影响,颗粒随机轨道模型。30模型小结各种不同的气固两相流动模型,从不同的角度对真实的气固两相流动过程做了近似和简化,因而具有不同的适用范围。对稀疏多相流动中固体颗粒,液体颗粒以及气泡运动的计算方法,Loth[159]做过较为详细的介绍和分类。一般情况下可通过判断颗粒相对浓度和相间滑移量的大小来选择合适的模型。模型小结各种不同的气固两相流动模型,从不同的角度对真实的气固31不过随机轨道模型计算时需要跟踪大量的颗粒轨道,因而造成计算机的存储量和计算量都很大,从而使其在工程应用上受到一定程度的限制。从已有的研究来看,在湍流气固两相流动的数值模拟方法中,颗粒轨道模型的应用最为广泛。它的优点在于计算工作量小,能够模拟有蒸发、挥发、两相化学反应和在不同阶段有不同质量损失率的颗粒相的复杂经历,而且颗粒相采用拉格朗日坐标系处理可以避免伪扩散。不过随机轨道模型计算时需要跟踪大量的颗粒轨道,因而造成计算机32Crowe等[183]和先后对气固两相湍流流动的数值模拟方法进行过概括总结。在Mashayek等[184]的综述中,他们对最新的气固、气液两相流动的数值模拟方法进行了详细的介绍,包括了拉格朗日描述的直接数值模拟、大涡模拟和统计模型,以及欧拉方法描述的RANS模型和PDF模型等,Crowe等[183]和先后对气固两相湍流流动的数值模拟方法33颗粒轨道法对稀疏两相流来说,颗粒的存在对气相影响很小,可不予考虑,这种情况被称为单向耦合(One-wayCoupling),即只认为气相运动特性单方面影响着颗粒的运动情况。而对于浓度较高的气固两相流动,不仅气相影响着颗粒的运动,而且颗粒对气相运动也有明显的影响,不应被忽略。这种同时考虑颗粒和流体间相互作用的情况被称为双向耦合(Two-wayCoupling)。如果再进一步考虑颗粒间的相互碰撞,则被称为四向耦合(Four-wayCoupling)。颗粒轨道法对稀疏两相流来说,颗粒的存在对气相影响很小,可不予34流体相被看作为连续介质,而颗粒相被看作与流体有滑移的,沿自身轨道运动的分散群;颗粒相自身无湍流扩散;颗粒群按初始尺寸分组,各组颗粒群沿各自轨道运动,互不干扰;颗粒群对流体的质量、动量和能量相互影响当作是某种等价的连续分布于多相流空间中的物质源、动量源和能量源。流体相被看作为连续介质,而颗粒相被看作与流体有滑移的,沿自身35拉格郎日轨道法流体相方程拉格郎日轨道法流体相方程36直角坐标系中三维流动微分方程式各项的意义

直角坐标系中三维流动微分方程式各项的意义方程名称连续性方程100X方向动量方程uY方向动量方程vZ方向动量方程w湍流动能k湍流动能耗散率直角坐标系中三维流动微分方程式各项的意义直角坐标系中三维37表中,u、v、w为x、y、z方向的速度分量,为湍流脉动能的产生项:有效粘性系数,其中湍流粘性系数

,C=0.09,

C1=1.47,

C2=1.92,

=1.3,

k=1.0.表中,u、v、w为x、y、z方向的速度分量,为湍流脉动能的产38气相流体控制微分方程组的数值解法对气相流体控制控制微分方程组的求解采用SIMPLEST方法。主要步骤如下:1.估计整个积分区域的压力分布P*;2.用雅克比逐点校正法解动量方程,得到速度场u*,v*,w*;3.建立和求解压力校正方程,得到;4.求速度校正值,和,得到校正后的速度分布u=u*+等;5.校正压力分布,p=p*+α,其中α为松驰因子;6.把求出的p作为下次迭代的估计值,重复(1)到(5),直到收敛。计算中采用低松驰,即α<1。气相流体控制微分方程组的数值解法对气相流体控制控制微分方程组39拉格郎日轨道法颗粒相方程拉格郎日轨道法颗粒相方程40颗粒在湍流脉动中的扩散湍流脉动对颗粒运动的影响.doc颗粒在湍流脉动中的扩散湍流脉动对颗粒运动的影响.doc41脉动频谱随机轨道模型脉动频谱随机轨道模型.doc脉动频谱随机轨道模型脉动频谱随机轨道模型.doc421.进口条件

在进口处须给出颗粒位置的计算站j,计算站越多,则最后求解出的颗粒的浓度场和速度场就越接近于实际情况,但这样做的缺点是计算时间增大。同时,我们一般以几档离散的颗粒直径来表示颗粒尺寸的连续分布,一般取i=3~5个尺寸数,以充分地描述分散颗粒群的运动规律,

颗粒的进口速度有四种设定方法:(1)设颗粒进口速度为零,即,这相当于颗粒由静止状态被气流曳引加速。(2)设颗粒气口速度和气流进口速度一样,。相当于颗粒在管道内已被气流充分加速。(3)大于或小于,视颗粒在管道中的加速或减速情况而定。(4)设颗粒和气流的速度相差颗粒终端沉降速度,即这是达到稳定的一种假设。

一般情况下,我们都认为在进口处颗粒的速度及温度都均匀分布,当然也可以设颗粒速度按一定规律分布,并且不同尺寸组的颗粒具有不同的初始速度,这样更接近于实际的情况,但要消耗更多的计算时间。

颗粒相进口条件,

1.进口条件颗粒相进口条件,43颗粒相边界条件Grant.G等经验公式

Sommerfeld冲量法

无滑移

有滑移考虑粗糙度时对壁面的处理方式

随机数模拟虚拟壁面倾角

虚拟壁面与不规则反弹

正弦表面法

颗粒相边界条件Grant.G等经验公式Sommerfeld44颗粒相边界条件ReflectEscapeTrapInterior颗粒发生弹性或非弹性碰撞反射穿过壁面而逃逸(颗粒的轨道计算在此处终止)在壁面处被捕集,非挥发性颗粒在此处终止计算,颗粒或液滴中的挥发性物质在此处被释放到气相中穿过内部的诸如辐射或多孔介质间断面区域颗粒相边界条件ReflectEscapeTrapInte45颗粒轨道法(浓相)硬球模型软球模型颗粒轨道法(浓相)硬球模型46软球模型基于软颗粒模型的DEM方法最早是由Cundall和Strack提出的(CundallandStrack,1979)用于计算土壤力学的,它认为颗粒在碰撞时会产生变形,是“软”的,颗粒间的碰撞力由颗粒的变形和颗粒的弹性模量决定,随着颗粒变形的增加颗粒间的相互作用力也相应增加,颗粒在碰撞过程中是一个变加速度的过程。两个颗粒在碰撞过程中可以有第三个颗粒再次碰撞过来,可以计算多体碰撞的情况。

softsphear.doc软球模型基于软颗粒模型的DEM方法最早是由Cundall和47硬球模型硬颗粒模型主要由颗粒的动量守恒方程,结合颗粒的恢复系数,牛顿第二定律计算颗粒碰撞前、后的速度,它认为颗粒间的碰撞是完全弹性的碰撞,碰撞前后能量、动量守恒。同时这个模型还假设颗粒间的碰撞只有两两碰撞,因此不能处理多体碰撞的情况。

hardsphear.doc硬球模型硬颗粒模型主要由颗粒的动量守恒方程,结合颗粒的恢复系48拉格郎日轨道法颗粒源项计算在用拉格朗日方法求解颗粒运动时,每一条轨迹代表一组粒径相同的颗粒的运动情况。设共有n个轨道穿过网格k,其中第j个轨道含nj个质量为mpj的颗粒。则该组颗粒通过网格k时的动量源项为:

拉格郎日轨道法颗粒源项计算在用拉格朗日方法求解颗粒运动时,每49所有轨道留下的源项为:

按上式计算出所有网格的动量源项,并代入气相控制微分方程组即可进行动量耦合。所有轨道留下的源项为:

50颗粒的浓度场颗粒相的浓度场和速度场的确定.doc颗粒的浓度场颗粒相的浓度场和速度场的确定.doc51颗粒的速度场颗粒相的浓度场和速度场的确定.doc颗粒的速度场颗粒相的浓度场和速度场的确定.doc52FRST模型迭代计算步骤是(1)用SIMPLEST方法求解气相场(初次计算时可不考虑颗粒相的影响),采用k-双方程湍流模型考虑气相湍流运动,得出、、,k,值。(2)由k和值计算气相脉动速度的幅值ui,vi,wi。(3)用随机的Fourier级数模拟气流的脉动速度,并求解颗粒的速度up,vp和wp及颗粒的轨迹xp,yp,zp。(4)由体积平均法求解颗粒的速度及浓度场。(5)颗粒相对气相的耦合作用以源项表示,将源项、、代入气相方程进行求解。(6)重复上述迭代过程,直至气相场和颗粒相速度场及浓度场收敛为止。FRST模型迭代计算步骤是(1)用SIMPLEST53拉格郎日轨道法

程序开始(设初始条件和进口条件)计算单相气相场到收敛根据所求出的气相场计算颗粒的速度、轨迹、温度等计算颗粒源项将源项代入气相场,并再次迭代气相场到收敛收敛计算颗粒速度和浓度场停机拉格郎日轨道法

程序开始计算单相气相场到收敛根据所求出的气相54参考文献SpaldingDB.Ageneralpurposecomputerprogramformultidimensionalone-andtwo-phaseflows.J.MathComput.Simul.,1981,23:267-276周力行,黄晓晴.三维湍流气粒两相流的k—ε—kp模型.工程热物理学报,1991,12(4):428-433周力行.湍流两相流动及燃烧的统一关联矩封闭模型.工程热物理学报,1991,12(2):203-209ReeksMW.PDFmodelingofgas-particleflows.In:2ndInt.Symp.OnMulti-phaseFluid,Non-NewtonianFluidandPhysicochemicalFluidFlows’97,1997,BeijingZaichikLI,AlipchenkovVM.Simulationoftransportofcollidingparticlessuspendedinturbulentshearflows.In:2ndInt.Symp.OnTurbulence,HeatandMassTransfer,1997,DelftUniversitySimoninO.Continuummodelingofdispersedturbulenttwo-phaseflows.VKILectures“CombustioninTwoPhaseFlow”,1996李勇,周力行.k—ε—PDF两相湍流模型和台阶后方气粒两相流动的模拟.工程热物理学报,1996,17(2):234-238周力行,李勇.旋流两相流动的DSM—PDF两相湍流模型.工程热物理学报,1999,20(2):252-257参考文献SpaldingDB.Ageneralpu55周力行,湍流气粒两相流动和燃烧的理论与数值模拟【专著】,科学出版社,1994,北京。岑可法,樊建人,工程气固多相流动的理论与计算【专著】,浙江大学出版社,1990,杭州。周力行,湍流气粒两相流动和燃烧的理论与数值模拟【专著】56第二章多相流动基础理论2.1.4多相流动理论模型和数值方法第二章多相流动基础理论2.1.4多相流动理论模型和数值方57特征时间流动时间(停留时间):扩散驰豫时间:平均运动驰豫时间:流体脉动时间:颗粒间碰撞时间:特征时间流动时间(停留时间):扩散驰豫时间:平均运动驰豫时间58无滑移流(平衡流)强滑移流(冻结流)扩散——冻结流扩散——平衡流稀疏悬浮流稠密悬浮流无滑移流(平衡流)59主要内容(气固多相流)

长期以来,气固两相流动的研究中按照对颗粒的处理方式不同,主要有两大类模型确定轨道模型随机轨道模型单颗粒动力学模型(SPD模型)颗粒轨道模型(PT模型)小滑移模型(SS模型)无滑移模型(NS模型)拟流体(多流体)模型(MF模型)离散介质模型连续介质模型主要内容(气固多相流)长期以来,气固两相流动的研究中按60本章要义

各种颗粒模型的一些基本观点颗粒相模型

基本观点

颗粒对流体的影响

相间滑移

坐标系

颗粒相输运性质

单颗粒动力学模型离散体系

不考虑

拉格朗日无,扩散冻结

颗粒轨道模型

离散体系考虑有拉格朗日无(确定轨道);有(随机轨道模型)

小滑移模型

连续介质

不考虑

有(滑移=扩散)

欧拉

有(扩散=滑移)

无滑移模型

连续介质

部分考虑无(动力学平衡,热力学平衡或冻结)

欧拉

有(扩散平衡)

拟流体(多流体)模型

连续介质

全部考虑有

欧拉

本章要义各种颗粒模型的一些基本观点颗粒相模型基本观点61按各种模型提出的时间大致顺序无滑移模型小滑移连续介质模型滑移-扩散的颗粒群模型分散颗粒群模型双流体模型颗粒轨道模型按各种模型提出的时间大致顺序无滑移模型小滑移连续介质模型滑移62拟流体模型(连续-连续介质模型)前提:在流体中弥散的颗粒相也是一种连续的流体;气相和颗粒相是两种相互渗透的连续相,各自满足连续性方程、动量方程和能量守恒方程。拟流体模型(连续-连续介质模型)前提:在流体中弥散的颗粒相也63无滑移模型(No-slipModel)颗粒群看作连续介质,颗粒群只有尺寸差别,不同尺寸代表不同相;颗粒与流体相间无相对速度;各颗粒相的湍流扩散系数取流体相扩散系数相等;相间相互作用等同于流体混合物间各成分相互作用,相间阻力不计。基本假设:无滑移模型(No-slipModel)颗粒群看作连续介质,64小滑移连续介质模型

(Soo-drewSlipModel)颗粒群看作连续介质,不同尺寸组代表不同相;各组尺寸颗粒群速度不等于当地的流体相速度,各颗粒相之间的速度亦不相等,即各颗粒相间、与流体相间有相对速度;相间的相互作用类似于流体混合物中各种组分之间的相互作用,颗粒相和流体相间的阻力忽略不计;颗粒的运动是由流体的运动而引起的,颗粒相的滑移是由于颗粒相对于多相流整体的湍流扩散所致,故这种小滑移也称为湍流飘移;多相混合物整体与各相之间的关系,仍类似于多组分流体混合物和各流体组分间的关系.基本假设:小滑移连续介质模型

(Soo-drewSlipModel65滑移-扩散的颗粒群模型

(Slip-diffusionModel)各相时均速度差异造成滑移的主要部分,由于各相的初始动量不同引起;扩散漂移造成滑移的小部分;空间各点各尺寸组的速度、尺寸、温度等物理参数均不相同。基本假设:滑移-扩散的颗粒群模型

(Slip-diffusionMo66拟流体模型小结无滑移模型:颗粒相的宏观运动而引起的质量迁移是由流体运动引起的;小滑移模型:混合物运动引起的滑移-扩散模型:颗粒相自身的宏观运动引起了质量迁移拟流体模型小结无滑移模型:颗粒相的宏观运动而引起的质量迁移是67拟流体模型数值方法拟流体模型数值方法68常用数值模拟方法传统模式理论直接模拟大涡模拟

离散涡方法格子气湍流流场数值模拟方法简介常用数值模拟方法传统模式理论直接模拟大涡模拟离散涡方法格子69双方程模型

非线性模型

多尺度模型

RNG模型

Reynolds应力模型(RSM)

代数应力模型(ASM)

FLT模型

SSG模型

湍流模式理论以Reynolds时均运动方程和脉动运动方程为基础,依靠理论与经验的接合,引进一系列模型假设,从而建立一组描写湍流平均量的方程组。

湍流模式理论简介双方程模型非线性模型多尺度70对经验数据的依赖性;将脉动运动的全部细节一律抹平从而丢失大量重要信息;目前各种模型,都只能适用于解决一种或者几种特定的湍流运动。

湍流模式理论局限性对经验数据的依赖性;湍流模式理论局限性71计算机发展数值算法发展直接模拟(DNS)技术的应用出现大型并行计算机Petaflops(1015)级有限差分有限元谱方法小波变换自适应网格并行计算技术方程本身是精确的,不含任何认为假设和经验常数,仅有的误差只是由数值方法引入的误差。计算包括脉动运动在内的湍流所有瞬时流动量在三维流场中的时间演变;不用任何湍流模型,直接数值求解完整的三维非定常的N-S方程组;

湍流直接模拟(DNS)简介计算机发展数值算法发展直接模拟(DNS)技术的应用出现大型72湍流旋涡结构包括大尺度涡和小尺度涡大尺度涡小尺度涡湍流流场涡结构图湍流旋涡结构包括大尺度涡和小尺度涡大尺度涡小尺度涡湍73直接模拟计算量太大,很难计算工程实际高雷诺数湍流流场。为什么要大涡模拟?湍流大涡模拟简介流场大尺度涡小尺度涡决定湍流流场的基本形态和性质;流场质量、能量的主要携带者;高度各向异性,无法建立统一模型。由大涡非线性作用产生;流场能量的主要耗散者;近似各向同性,可以考虑建立统一模型。小尺度涡对大涡的影响用模型进行模拟大涡模拟思想对大尺度涡进行直接模拟直接模拟计算量太大,很难计算工程实际高雷诺数湍流流场。为什74拟流体模型现状为了能更完整地考虑颗粒相各种湍流输运特性以及相间的滑移和耦合,Spalding等[1]首先提出了双流体模型。周力行教授对双流体模型进行了深入的研究。他们针对各向同性流动,提出了颗粒湍动能输运方程的模型[2]。针对各向异性流动,则将单相湍流流动的RSM模型推广至气固两相流中,提出了统一二阶矩模型(USM)[3]。拟流体模型现状为了能更完整地考虑颗粒相各种湍流输运特性以及相75拟流体模型现状概率密度函数(PDF)方法被引用于构造双流体模型的两相湍流模型。Reeks[4]从稳态流场中的颗粒运动方程出发,得到了颗粒相的PDF输运方程,同时还用PDF方法研究了近壁区颗粒的运动和自然边界条件的处理,克服了一般双流体模型难以描述的颗粒在壁面沉降、反弹过程的缺陷。Zaichik等[5]用Rurutsu-Novikov定理和泛函分析的方法,实现了采用PDF方法对流体湍流和颗粒相的模拟。拟流体模型现状概率密度函数(PDF)方法被引用于构造双流体模76拟流体模型现状Simonin[6]则运用流体涡团的Lagrangian模型来构造颗粒轨道上的流体涡团Lagrangian方程,从而得到了颗粒相的连续、动量和Reynolds应力方程。周力行教授等采用了二阶矩封闭的思路来封闭PDF输运方程中湍流与颗粒的相间作用项,将颗粒相的PDF模型与流体运动的各类模型相结合,提出了k—ε—PDF模型[7]和FDSM—PDF模型[8]。拟流体模型现状Simonin[6]则运用流体涡团的Lagra77双流体模型双流体模型78双流体模型固相压力固相的剪切粘度

固相的体积粘度固相的应力张量

气相牛顿粘性应力方程双流体模型固相压力固相的剪切粘度

固相的体积粘度固相的应力79多相流动理论模型和数值方法-多相流在线课件80离散颗粒模型确定轨道模型随机轨道模型单颗粒动力学模型(SPD模型)颗粒轨道模型(PT模型)…….共同特点气相颗粒相欧拉系拉格郎日系离散颗粒模型确定轨道模型随机轨道模型单颗粒动力学模型(SPD81不同之处单颗粒动力学模型颗粒轨道模型考虑已知流场中颗粒平均运动或对流运动的轨道,忽略颗粒对流场的影响。充分考虑气相和颗粒相间的相互作用。不同之处单颗粒动力学模型颗粒轨道模型考虑已知流场中颗粒平均运82分散颗粒群模型基本假设:在欧拉坐标系中考察流体相的运动情况,而在拉格朗日坐标系中研究颗粒群的运动情况。即把颗粒群按初始尺寸分组,各组颗粒沿其自身轨道运动。由于颗粒的蒸发、挥发及燃烧、流体的阻力作用和传热等原因,颗粒群沿轨道会发生速度、质量、温度、密度和尺寸的变化,同时对流体造成了分布于整个体积中的物质源、动量源和能量源。该方法能研究颗粒群和流体相之间的较大滑移,并把复杂的颗粒变化情况耦合进来。分散颗粒群模型基本假设:在欧拉坐标系中考察流体相的运动情况,83按照是否考虑颗粒群的湍流扩散,又可把颗粒轨道模型分为两类:一类是不考虑颗粒群湍流扩散的颗粒确定轨道模型,一类是考虑颗粒群湍流扩散的颗粒随机轨道模型。按照是否考虑颗粒群的湍流扩散,又可把颗粒轨道模型分为两类:一84颗粒确定轨道模型处理颗粒群的方法较简单,能够考虑相间速度与温度的滑移,并可以追踪比较复杂的颗粒经历,数值计算不会产生伪扩散。但其存在一个缺点,就是对颗粒的湍流扩散缺乏较好的处理。颗粒确定轨道模型处理颗粒群的方法较简单,能够考虑相间速度与温85考虑到湍流脉动对颗粒轨迹造成的影响,Yuu等[142]首先提出了涡作用模型。在经过Gosman等[143]和Berlemont等[144]改进以后,得到了广泛的应用。Sommerfeld[145]和Shuen[146]等采用此模型进行数值求解,得到了比较满意的结果。浙江大学热能工程研究所的岑可法院士和樊建人教授[147]提出的随机频谱颗粒轨道(FSRT)模型,颗粒随机轨道模型。考虑到湍流脉动对颗粒轨迹造成的影响,颗粒随机轨道模型。86模型小结各种不同的气固两相流动模型,从不同的角度对真实的气固两相流动过程做了近似和简化,因而具有不同的适用范围。对稀疏多相流动中固体颗粒,液体颗粒以及气泡运动的计算方法,Loth[159]做过较为详细的介绍和分类。一般情况下可通过判断颗粒相对浓度和相间滑移量的大小来选择合适的模型。模型小结各种不同的气固两相流动模型,从不同的角度对真实的气固87不过随机轨道模型计算时需要跟踪大量的颗粒轨道,因而造成计算机的存储量和计算量都很大,从而使其在工程应用上受到一定程度的限制。从已有的研究来看,在湍流气固两相流动的数值模拟方法中,颗粒轨道模型的应用最为广泛。它的优点在于计算工作量小,能够模拟有蒸发、挥发、两相化学反应和在不同阶段有不同质量损失率的颗粒相的复杂经历,而且颗粒相采用拉格朗日坐标系处理可以避免伪扩散。不过随机轨道模型计算时需要跟踪大量的颗粒轨道,因而造成计算机88Crowe等[183]和先后对气固两相湍流流动的数值模拟方法进行过概括总结。在Mashayek等[184]的综述中,他们对最新的气固、气液两相流动的数值模拟方法进行了详细的介绍,包括了拉格朗日描述的直接数值模拟、大涡模拟和统计模型,以及欧拉方法描述的RANS模型和PDF模型等,Crowe等[183]和先后对气固两相湍流流动的数值模拟方法89颗粒轨道法对稀疏两相流来说,颗粒的存在对气相影响很小,可不予考虑,这种情况被称为单向耦合(One-wayCoupling),即只认为气相运动特性单方面影响着颗粒的运动情况。而对于浓度较高的气固两相流动,不仅气相影响着颗粒的运动,而且颗粒对气相运动也有明显的影响,不应被忽略。这种同时考虑颗粒和流体间相互作用的情况被称为双向耦合(Two-wayCoupling)。如果再进一步考虑颗粒间的相互碰撞,则被称为四向耦合(Four-wayCoupling)。颗粒轨道法对稀疏两相流来说,颗粒的存在对气相影响很小,可不予90流体相被看作为连续介质,而颗粒相被看作与流体有滑移的,沿自身轨道运动的分散群;颗粒相自身无湍流扩散;颗粒群按初始尺寸分组,各组颗粒群沿各自轨道运动,互不干扰;颗粒群对流体的质量、动量和能量相互影响当作是某种等价的连续分布于多相流空间中的物质源、动量源和能量源。流体相被看作为连续介质,而颗粒相被看作与流体有滑移的,沿自身91拉格郎日轨道法流体相方程拉格郎日轨道法流体相方程92直角坐标系中三维流动微分方程式各项的意义

直角坐标系中三维流动微分方程式各项的意义方程名称连续性方程100X方向动量方程uY方向动量方程vZ方向动量方程w湍流动能k湍流动能耗散率直角坐标系中三维流动微分方程式各项的意义直角坐标系中三维93表中,u、v、w为x、y、z方向的速度分量,为湍流脉动能的产生项:有效粘性系数,其中湍流粘性系数

,C=0.09,

C1=1.47,

C2=1.92,

=1.3,

k=1.0.表中,u、v、w为x、y、z方向的速度分量,为湍流脉动能的产94气相流体控制微分方程组的数值解法对气相流体控制控制微分方程组的求解采用SIMPLEST方法。主要步骤如下:1.估计整个积分区域的压力分布P*;2.用雅克比逐点校正法解动量方程,得到速度场u*,v*,w*;3.建立和求解压力校正方程,得到;4.求速度校正值,和,得到校正后的速度分布u=u*+等;5.校正压力分布,p=p*+α,其中α为松驰因子;6.把求出的p作为下次迭代的估计值,重复(1)到(5),直到收敛。计算中采用低松驰,即α<1。气相流体控制微分方程组的数值解法对气相流体控制控制微分方程组95拉格郎日轨道法颗粒相方程拉格郎日轨道法颗粒相方程96颗粒在湍流脉动中的扩散湍流脉动对颗粒运动的影响.doc颗粒在湍流脉动中的扩散湍流脉动对颗粒运动的影响.doc97脉动频谱随机轨道模型脉动频谱随机轨道模型.doc脉动频谱随机轨道模型脉动频谱随机轨道模型.doc981.进口条件

在进口处须给出颗粒位置的计算站j,计算站越多,则最后求解出的颗粒的浓度场和速度场就越接近于实际情况,但这样做的缺点是计算时间增大。同时,我们一般以几档离散的颗粒直径来表示颗粒尺寸的连续分布,一般取i=3~5个尺寸数,以充分地描述分散颗粒群的运动规律,

颗粒的进口速度有四种设定方法:(1)设颗粒进口速度为零,即,这相当于颗粒由静止状态被气流曳引加速。(2)设颗粒气口速度和气流进口速度一样,。相当于颗粒在管道内已被气流充分加速。(3)大于或小于,视颗粒在管道中的加速或减速情况而定。(4)设颗粒和气流的速度相差颗粒终端沉降速度,即这是达到稳定的一种假设。

一般情况下,我们都认为在进口处颗粒的速度及温度都均匀分布,当然也可以设颗粒速度按一定规律分布,并且不同尺寸组的颗粒具有不同的初始速度,这样更接近于实际的情况,但要消耗更多的计算时间。

颗粒相进口条件,

1.进口条件颗粒相进口条件,99颗粒相边界条件Grant.G等经验公式

Sommerfeld冲量法

无滑移

有滑移考虑粗糙度时对壁面的处理方式

随机数模拟虚拟壁面倾角

虚拟壁面与不规则反弹

正弦表面法

颗粒相边界条件Grant.G等经验公式Sommerfeld100颗粒相边界条件ReflectEscapeTrapInterior颗粒发生弹性或非弹性碰撞反射穿过壁面而逃逸(颗粒的轨道计算在此处终止)在壁面处被捕集,非挥发性颗粒在此处终止计算,颗粒或液滴中的挥发性物质在此处被释放到气相中穿过内部的诸如辐射或多孔介质间断面区域颗粒相边界条件ReflectEscapeTrapInte101颗粒轨道法(浓相)硬球模型软球模型颗粒轨道法(浓相)硬球模型102软球模型基于软颗粒模型的DEM方法最早是由Cundall和Strack提出的(CundallandStrack,1979)用于计算土壤力学的,它认为颗粒在碰撞时会产生变形,是“软”的,颗粒间的碰撞力由颗粒的变形和颗粒的弹性模量决定,随着颗粒变形的增加颗粒间的相互作用力也相应增加,颗粒在碰撞过程中是一个变加速度的过程。两个颗粒在碰撞过程中可以有第三个颗粒再次碰撞过来,可以计算多体碰撞的情况。

softsphear.doc软球模型基于软颗粒模型的DEM方法最早是由Cundall和103硬球模型硬颗粒模型主要由颗粒的动量守恒方程,结合颗粒的恢复系数,牛顿第二定律计算颗粒碰撞前、后的速度,它认为颗粒间的碰撞是完全弹性的碰撞,碰撞前后能量、动量守恒。同时这个模型还假设颗粒间的碰撞只有两两碰撞,因此不能处理多体碰撞的情况。

hardsphear.doc硬球模型硬颗粒模型主要由颗粒的动量守恒方程,结合颗粒的恢复系104拉格郎日轨道法颗粒源项计算在用拉格朗日方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论