江苏省扬州市江都区国际校2023学年中考五模数学试题含解析_第1页
江苏省扬州市江都区国际校2023学年中考五模数学试题含解析_第2页
江苏省扬州市江都区国际校2023学年中考五模数学试题含解析_第3页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市江都区国际校2023学年中考五模数学测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=53,则∠B的度数是(

)A.30°B.45°C.50°D.60°2.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣53.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是正方形B.等腰梯形既是轴对称图形又是中心对称图形C.圆的切线垂直于经过切点的半径D.垂直于同一直线的两条直线互相垂直4.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.5.|﹣3|的值是()A.3 B. C.﹣3 D.﹣6.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=A.4 B.3 C.2 D.37.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=68.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.59.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是310.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.12.如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为cm.13.函数的自变量的取值范围是.14.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).①AC=2BC②△BCD为正三角形③AD=BD15.不等式>4﹣x的解集为_____.16.与直线平行的直线可以是__________(写出一个即可).17.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.三、解答题(共7小题,满分69分)18.(10分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.19.(5分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345y/cm6.04.84.56.07.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.20.(8分)如图,在平面直角坐标系中,圆M经过原点O,直线与x轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.21.(10分)自学下面材料后,解答问题。分母中含有未知数的不等式叫分式不等式。如:<0等。那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:若a>0,b>0,则>0;若a<0,b<0,则>0;若a>0,b<0,则<0;若a<0,b>0,则<0.反之:若>0,则或,(1)若<0,则___或___.(2)根据上述规律,求不等式>0的解集.22.(10分)如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知:,,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为(点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值.23.(12分)先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值.24.(14分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.

2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【答案解析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.

在直角三角形ACD中求出∠D.则sinD=AC∠D=60°∠B=∠D=60°.故选D.“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.2、B【答案解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.0000025=2.5×10﹣6;故选B.【答案点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、C【答案解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行.故选C.4、D【答案解析】

根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.【题目详解】由题意可得,去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,故选:D.【答案点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.5、A【答案解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数,故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.6、B【答案解析】

首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为32【题目详解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y轴,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC与△ABD的面积之和为32∴12(k-1)×1+12(k2-1故答案为B.【答案点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.7、D【答案解析】

本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【题目详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【答案点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.8、B【答案解析】

当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【题目详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【答案点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.9、C【答案解析】

由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【题目详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为×(2.5+3)=2.75,此选项错误;D.平均数为:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【答案点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.10、D【答案解析】

如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.二、填空题(共7小题,每小题3分,满分21分)11、(a+1)1.【答案解析】

原式提取公因式,计算即可得到结果.【题目详解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],

=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],

=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],

=…,

=(a+1)1.

故答案是:(a+1)1.【答案点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.12、【答案解析】

当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM于N,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P点纵坐标的最大值为.【答案点睛】本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.13、x≠1【答案解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠114、②③【答案解析】

根据平行线的性质以及等边三角形的性质即可求出答案.【题目详解】由题意可知:∠A=30°,∴AB=2BC,故①错误;∵l1∥l2,∴∠CDB=∠1=60°.∵∠CBD=60°,∴△BCD是等边三角形,故②正确;∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.故答案为②③.【答案点睛】本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.15、x>1.【答案解析】

按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【题目详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【答案点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.16、y=-2x+5(答案不唯一)【答案解析】

根据两条直线平行的条件:k相等,b不相等解答即可.【题目详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案为y=2x+1.(提示:满足的形式,且)【答案点睛】本题考查了两条直线相交或平行问题.直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条直线重合.17、13【答案解析】测试卷解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.设母线长为R,则:解得:故答案为13.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)1-π.【答案解析】

(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.【题目详解】(1)过C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.∵CF⊥AB,∴AB为⊙C的切线;(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.【答案点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.19、(1)2.1;(2)见解析;(3)x=2时,函数有最小值y=4.2【答案解析】

(1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;(2)可在网格图中直接画出函数图象;(3)由函数图象可知函数的最小值.【题目详解】(1)当点P运动到点H时,AH=3,作HN⊥AB于点N.∵在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案为:2.1;(2)(3)根据函数图象可知,当x=2时,函数有最小值y=4.2.故答案为:4.2.【答案点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.【答案解析】分析:(1)令已知的直线的解析式中x=0,可求出B点坐标,令y=0,可求出A点坐标;(2)根据A、B的坐标易得到M点坐标,若抛物线的顶点C在⊙M上,那么C点必为抛物线对称轴与⊙O的交点;根据A、B的坐标可求出AB的长,进而可得到⊙M的半径及C点的坐标,再用待定系数法求解即可;(3)在(2)中已经求得了C点坐标,即可得到AC、BC的长;由圆周角定理:∠ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P点坐标.本题解析:(1)对于直线,当时,;当时,所以A(﹣8,0),B(0,﹣6);(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB为⊙M的直径,∴点M为AB的中点,M(﹣4,﹣3),∵MC∥y轴,MC=5,∴C(﹣4,2),设抛物线的解析式为y=a(x+4)²+2,把B(0,﹣6)代入得16a+2=﹣6,解得a=,∴抛物线的解析式为,即;(3)存在.当y=0时,,解得x,=﹣2,x,=﹣6,∴D(﹣6,0),E(﹣2,0),,设P(t,-6),∵∴=20,即||=1,当=-1,解得,,此时P点坐标为(﹣4+,-1)或(﹣4﹣,-1);当时,解得=﹣4+,=﹣4﹣;此时P点坐标为(﹣4+,1)或(﹣4﹣,1).综上所述,P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.21、(1)或;(2)x>2或x<−1.【答案解析】

(1)根据两数相除,异号得负解答;(2)先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.【题目详解】(1)若>0,则或;故答案为:或;(2)由上述规律可知,不等式转化为或,所以,x>2或x<−1.【答案点睛】此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.22、(1);(2);(3)或【答案解析】

(1)如图2,连接OP,则DF与半圆相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;(2)利用,求出,则;DF与半圆相切,由(1)知:PD=CD=18,即可求解;(3)设PG=GH=m,则:,求出,利用,即可求解.【题目详解】(1)如图,连接∵与半圆相切,∴,∴,在矩形中,,∵,根据勾股定理,得在和中,∴∴(2)如图,当点与点重合时,过点作与点,则∵且,由(1)知:∴,∴,∴当与半圆相切时,由(1)知:,∴(3)设半圆与矩形对角线交于点P、H,过点O作OG⊥DF,则PG=GH,,则,设:PG=GH=m,则:,,整理得:25m2-640m+1216=0,解得:,.【答案点睛】本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH的高OG,是本题的关键.23、-.【答案解析】

先把分式除法转换成乘法进行约分化简,然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论