版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
生物表面活性剂生物表面活性剂Introduction
Biosurfactants(amphiphiliccompounds)(synthesizedbymicroorganisms)hydrophobic(nonpolar)hydrophilic(polar)thatconferabilitytoaccumulatebetweenfluidphasessuchasoil/waterorair/water,reducingthesurfaceandinterfacialtensionsandformingemulsions.household、industryandagriculturemono-,oligo-orpolysaccharides(多糖),peptides(缩氨酸)orproteinssaturated,unsaturatedandhydroxylatedfattyacidsorfattyalcoholsIntroductionBiosurfactant生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件PropertiesSurfaceandinterfaceactivitybiodegradability(bioremediation).emulsifying
anddemulsifyingabilityantimicrobialactivityPropertiesSurfaceandinterfacSurfaceandinterfaceactivity
Ingeneral,biosurfactantsaremoreeffectiveandefficientandtheirCMC(criticalmicelleconcentration)isabout10-40timeslowerthanchemicalsurfactants,i.e.,lesssurfactantisnecessarytogetamaximaldecreaseonST.
Agoodsurfactantcanlowersurfacetension(ST)ofwaterfrom72to35mN/mandtheinterfacialtension(IT)water/hexadecane(十六烷)from40to1mN/m.SurfaceandinterfaceactivityThebiosurfactantsaccumulateattheinterfacebetweentwoimmisciblefluidsorbetweenafluidandasolid..(figure1)Byreducingsurface(liquid-air)andinterfacial(liquid-liquid)tensiontheyreducetherepulsiveforcesbetweentwodissimilarphasesandallowthesetwophasestomixandinteractmoreeasilyThebiosurfactantsaccumulateBiosurfactantactivitiesdependontheconcentrationofthesurface-activecompoundsuntilthecriticalmicelleconcentration(CMC)isobtained.AtconcentrationsabovetheCMC,biosurfactantmoleculesassociatetoformmicelles,bilayersandvesicles(Figure2).TheCMCiscommonlyusedtomeasuretheefficiencyofsurfactant.EfficientbiosurfactantshavealowCMC,whichmeansthatlessbiosurfactantisrequiredtodecreasethesurfacetension.Biosurfactantactivitiesdepe
Thebiosurfactanteffectivenessisdeterminedbymeasuringitsabilitytochangesurfaceandinterfacialtensions,stabilizationofemulsionsandbystudyingitshydrophilic-lipophilicbalance(HLB).EmulsifierswithlowHLBarelipophilicandstabilizewater-in-oilemulsification,whereasemulsifierswithhighHLBhavetheoppositeeffectandconferbetterwatersolubility
Lowtoxicity
Forexample:AbiosurfactantfromP.aeruginosa(绿脓假单胞菌)(wascomparedwithasyntheticsurfactant(MarlonA-350)widelyusedinindustryintermsoftoxicityandmutagenicproperties.Bothassaysindicatedthehighertoxicityandmutageniceffectofthechemical-derivedsurfactantwhereasbiosurfactantwasconsideredslightlytonon-toxicandnon-mutagenic.lowornon-toxicproductsandtherefore,appropriateforpharmaceutical,cosmeticandfooduses.LowtoxicityForexample:AEmulsionformingandemulsionbreaking
Anemulsionisaheterogeneoussystem,consistingofatleastoneimmiscibleliquidintimatelydispersedinanotherintheformofdroplets,whosediameteringeneralexceeds0.1µm.Emulsionshaveaninternalordispersedandanexternalorcontinuousphase,sotherearegenerallytwotypes:oil-in-water(o/w)orwater-in-oil(w/o)emulsions.
Suchsystemspossessaminimalstability,whichmaybeaccentuatedbyadditivessuchassurface-activeagents(surfactants).Thus,stableemulsionscanbeproducedwithalifespanofmonthsandyears.Biosurfactantsmaystabilize(emulsifiers)ordestabilize(de-emulsifiers)theemulsion.High-molecular-massbiosurfactantsareingeneralbetteremulsifiersthanlow-molecular-massbiosurfactants.EmulsionformingandemulsionAntimicrobialactivity
Asignificativereductiononthemycoflora(真菌群)presentinstoredgrainsofcorn,peanutsandcottonseedswasobservedatiturinconcentrationof50-100ppm).Inactivationofenvelopedvirussuchasherpes(疱疹)andretrovirus(逆转录酶病毒)wasobservedwith80mMofsurfactin(脂肽).
Severalbiosurfactantshaveshownantimicrobialactionagainstbacteria,fungi(真菌),algae(藻类)andviruses.
Thelipopeptideiturin(脂肽伊枯草菌素)fromB.subtilis(枯草芽孢杆菌)showedpotentantifungalactivity.
AntimicrobialactivityAProduction
Biosurfactantsdonotcompeteeconomicallywithsyntheticsurfactants.Toreduceproductioncosts,othercarbonsources,suchasoliveoil(橄榄油),milleffluent(工厂废水),whey(乳清)fromcheesemaking,andcassavaflourwater(木薯粉水),usedvegetableoils,molasses(糖浆)(by-product).
Biosurfactantshavebeensynthesizedbyvariousresearchersusingdifferentmicroorganismsandcarbonsources.Thecarbonsourcesusedforbiosurfactantproductionarehydrocarbons,
carbohydrates,andvegetableoils.ProductionBiosurfactanProductionmethodsNaturalbiologicalextractmethod、Microorganismfermentationmethod、EnzymecatalyticmethodPurificationmethodsPrecipitationmethod、Extractionmethod、Superfilteringmethod、Foamseparationmethod、Adsorptionmethod、Columnchromatographymethod、Thinlayerchromatographymethod、Highperformanceliquidchromatographymethod、Liquidsurfaceadsorptionenrichmentmethod、Liquidmembraneseparationmethod.ProductionmethodsFig.2.Structureoffourdifferentrhamnolipidsproducedby
P.aeruginosa.Fig.2.Structureoffourd生物表面活性剂课件FactorsAffectingBiosurfactant
ProductionEffectofCarbonSourceonBiosurfactantsProduction
carbohydratehydrocarbonvegetableoilsFactorsAffectingBiosurfactanEffectofSupportMaterialandRelationshipwithWater
Supportmaterialforimmobilizedenzymeaffectsthe
watercontentintheproximityoftheenzymeandthe
partitioningofreactantsand/orproductsinthereaction
mixture.Sincethermalstabilityiscloselyrelatedtothe
amountofwaterinclosevicinityoftheenzymesmolecule.Theidealcarriershouldnotretainwaterthan
necessarytoreducetheriskofenzymedenaturation(变性).
Immobilizationonhydrophilicsupportsoftenleads
toalossoflipase(脂肪酶)activityastheenzymeundergoesa
conformational(构象)changetoaformofreducedactivity.
Thesesupportmaterialsmayalsoreducehydrophobic
substratesolubilityinhydrophilicregions,thereby
reducingthe
accessibilityofsubstratetotheactivesites.EffectofSupportMaterialandEffectofEnvironmentalFactorsonBiosurfactantsProduction
pHtemperatureagitation(搅拌)speedoxygenavailabilityRhamnolipidproductioninpseudomonassp(假单胞菌)wasitsmaximumatapHrangefrom
6to
6.5and
decreasedsharplyabovepH7.
Inaddition,surfacetensionandCMCsofabiosurfactantproduct
remainedstableoverawiderangeofpHvalues,whereasemulsificationhadanarrowerpHrange.EffectofEnvironmentalFactor
AthermophilicBacillussp(芽孢杆菌)grewandproducedbiosurfactantattemperatureabove40℃.Heattreatmentofsomebiosurfactantscausednoappreciablechangeinbiosurfactantproperties,suchastheloweringofthesurfacetensionandinterfacialtensionandtheemulsificationefficiency,allofthatremainedstableafterautoclaving(高压灭菌)at120℃for15min.
AnincreaseinagitationspeedresultinthereductionofbiosurfactantyieldduetotheeffectofshearinNocardia(土壤丝菌属).Onotherhand,inyeast,biosurfactantproductionincreaseswhentheagitationandaerationratesareincreased.
Saltconcentrationalsoaffectedbiosurfactantproductiondependingonitseffectsoncellularactivity.Some
biosurfactantproducts,however,werenotaffectedby
saltconcentrationsupto10%(wt/vol),althoughslight
reductionintheCMCsweredetected.AthermophilicBacillusspamodifieddrop-collapsetechniqueforsurfactantquantitationandscreeningofbiosurfactantproducingmicroorganismsQualitativedrop-collapsetestAdropofwaterappliedtoahydrophobicsurfaceintheabsenceofsurfactantswillformabead,asshowninFig.1(A).Thebeadforms
becausethepolarwatermoleculesarerepelledfromthehydrophobicsurface.Incontrast,ifthewaterdropletcontainssurfactant,theforceorinterfacialtensionbetweenthewaterdropandthehydrophobicsurfaceisreduced,whichresultsinthespreadingofthewaterdropoverthehydrophobicsurface(Fig.1,B).Theamountofsurfactantrequiredtocausedrop-collapseisdependentontheabilityofthesurfactanttoreducesurfaceandinterfacialtension.Themorepotentthesurfactant,thesmallerthequantitythatcanbedetected.
(A)Watercontrol(nosurfactant),(B)1000mg/Lrhamnolipid.amodifieddrop-collapsetechsurfactantquantitationbythedrop-collapseQuantitativedrop-collapsemethod:(A)Watercontrol,(B)25mg/Lrhamnolipid,(C)50mg/Lrhamnolipid,(D)75mg/Lrhamnolipidand(E)100mg/Lrhamnolipid.Inthiscase,asthesurfactantconcentrationincreased,thediameterofthesampledropincreased.surfactantquantitationbytheQuantitativeresultsfortwosurfactants,rhamnolipidandSDS,arepresentedasstandardcurvesinFig.2.Alinearcorrelationwasfoundbetweentherhamnolipidconcentrationandthedropdiameter,intherangeof0to100mg/L,withanr2=of0.997(Fig.2A).ForSDS(Fig.2B),concentrationsbetween0and2400mg/Lwerelinearlycorrelatedwithdropdiameter(r2=50.989).Fig.2.Thequantitativedrop-collapsemethod.Thefigureshowstheresultsobtainedwithtwodifferentsurfactants:(A)P.aeruginosaIGB83withaCMCof27mg/Land(B)SDSwithaCMCof1845mg/L.Eachpointrepresentsthemeanandstandarddeviationoffivereplicatesfromexperimentsthatwerecarriedoutintriplicate.Quantitativeresultsfortwo
PotentialCommercial
Applications
Mostsurfactantsarechemicallysynthesized.Nevertheless,inrecentyears,muchattentionhasbeendirectedtowardbiosurfactantsduetotheirbroad-rangefunctionalpropertiesandthediversesyntheticcapabilitiesofmicrobes.Mostimportantistheirenvironmentalacceptability,becausetheyarereadilybiodegradableandhavelowertoxicitythansyntheticsurfactants.Anumberofapplicationsof
biosurfactantshavebeenenvisaged.MEOR、FoodIndustry、CosmeticIndustry、MedicinalUse、Soil
BioremediationPotentialCommercialApplicatBiosurfactantsinMicrobialEnhancedOilRecovery(MEOR)
Fig.Mechanismofenhancedoilrecoverybybiosurfactants.theoilistrappedintheporesbycapillary
pressure.
Biosurfactantsreduceinterfacialtensionbetweenoil/waterandoil/rock.Thisreducesthecapillaryforcespreventingoilfrommovingthroughrockpores.Biosurfactantscanalsobindtightlytotheoil-waterinterfaceandformemulsion.Thisstabilizesthedesorbedoilinwaterandallowsremovalofoilalongwiththeinjectionwater.
BiosurfactantsinMicrobialETheApplicationofBiosurfactantsforSoil
BioremediationThebiologicalremediationprocesscanbeperformed(i)insitu(ii)inapreparedbed(
iii)inaslurryreactorsystemInsituprocessesareusuallyaccomplishedbyadditionofmicrobialnutrientstothesoil,whichallowsconsiderablegrowthofsoilmicrobialindigenouspopulation.Thusincreasedmicrobialbiomassinthesoil.(fig1)TheApplicationofBiosurfacta生物表面活性剂课件Figure3Mechanismofbiosurfactantactivityinmetal-contaminatedsoilduetotheloweringoftheinterfacialtension.Figure3MechanismofbiosurfConclusion
Advantage:
higherbiodegradability,betterenvironmentalcompatibility,higherfoaming,highselectivityandhighspecificactivityatextremetemperature,pHandsalinity.
Therethedemandofbiosurfactantsisincreasingworldwideinrecentyears.However,biosurfactantsdonoteconomicallycompetewithchemicallysynthesizedsurfactants.That’swhythereisagreatscopeforfurtherresearchtofindamoreeconomicalproductionprocessandtechnology.ConclusionAdvantage:higherThankYouThankYou
结束语谢谢大家聆听!!!35
结束语谢谢大家聆听!!!35生物表面活性剂生物表面活性剂Introduction
Biosurfactants(amphiphiliccompounds)(synthesizedbymicroorganisms)hydrophobic(nonpolar)hydrophilic(polar)thatconferabilitytoaccumulatebetweenfluidphasessuchasoil/waterorair/water,reducingthesurfaceandinterfacialtensionsandformingemulsions.household、industryandagriculturemono-,oligo-orpolysaccharides(多糖),peptides(缩氨酸)orproteinssaturated,unsaturatedandhydroxylatedfattyacidsorfattyalcoholsIntroductionBiosurfactant生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件PropertiesSurfaceandinterfaceactivitybiodegradability(bioremediation).emulsifying
anddemulsifyingabilityantimicrobialactivityPropertiesSurfaceandinterfacSurfaceandinterfaceactivity
Ingeneral,biosurfactantsaremoreeffectiveandefficientandtheirCMC(criticalmicelleconcentration)isabout10-40timeslowerthanchemicalsurfactants,i.e.,lesssurfactantisnecessarytogetamaximaldecreaseonST.
Agoodsurfactantcanlowersurfacetension(ST)ofwaterfrom72to35mN/mandtheinterfacialtension(IT)water/hexadecane(十六烷)from40to1mN/m.SurfaceandinterfaceactivityThebiosurfactantsaccumulateattheinterfacebetweentwoimmisciblefluidsorbetweenafluidandasolid..(figure1)Byreducingsurface(liquid-air)andinterfacial(liquid-liquid)tensiontheyreducetherepulsiveforcesbetweentwodissimilarphasesandallowthesetwophasestomixandinteractmoreeasilyThebiosurfactantsaccumulateBiosurfactantactivitiesdependontheconcentrationofthesurface-activecompoundsuntilthecriticalmicelleconcentration(CMC)isobtained.AtconcentrationsabovetheCMC,biosurfactantmoleculesassociatetoformmicelles,bilayersandvesicles(Figure2).TheCMCiscommonlyusedtomeasuretheefficiencyofsurfactant.EfficientbiosurfactantshavealowCMC,whichmeansthatlessbiosurfactantisrequiredtodecreasethesurfacetension.Biosurfactantactivitiesdepe
Thebiosurfactanteffectivenessisdeterminedbymeasuringitsabilitytochangesurfaceandinterfacialtensions,stabilizationofemulsionsandbystudyingitshydrophilic-lipophilicbalance(HLB).EmulsifierswithlowHLBarelipophilicandstabilizewater-in-oilemulsification,whereasemulsifierswithhighHLBhavetheoppositeeffectandconferbetterwatersolubility
Lowtoxicity
Forexample:AbiosurfactantfromP.aeruginosa(绿脓假单胞菌)(wascomparedwithasyntheticsurfactant(MarlonA-350)widelyusedinindustryintermsoftoxicityandmutagenicproperties.Bothassaysindicatedthehighertoxicityandmutageniceffectofthechemical-derivedsurfactantwhereasbiosurfactantwasconsideredslightlytonon-toxicandnon-mutagenic.lowornon-toxicproductsandtherefore,appropriateforpharmaceutical,cosmeticandfooduses.LowtoxicityForexample:AEmulsionformingandemulsionbreaking
Anemulsionisaheterogeneoussystem,consistingofatleastoneimmiscibleliquidintimatelydispersedinanotherintheformofdroplets,whosediameteringeneralexceeds0.1µm.Emulsionshaveaninternalordispersedandanexternalorcontinuousphase,sotherearegenerallytwotypes:oil-in-water(o/w)orwater-in-oil(w/o)emulsions.
Suchsystemspossessaminimalstability,whichmaybeaccentuatedbyadditivessuchassurface-activeagents(surfactants).Thus,stableemulsionscanbeproducedwithalifespanofmonthsandyears.Biosurfactantsmaystabilize(emulsifiers)ordestabilize(de-emulsifiers)theemulsion.High-molecular-massbiosurfactantsareingeneralbetteremulsifiersthanlow-molecular-massbiosurfactants.EmulsionformingandemulsionAntimicrobialactivity
Asignificativereductiononthemycoflora(真菌群)presentinstoredgrainsofcorn,peanutsandcottonseedswasobservedatiturinconcentrationof50-100ppm).Inactivationofenvelopedvirussuchasherpes(疱疹)andretrovirus(逆转录酶病毒)wasobservedwith80mMofsurfactin(脂肽).
Severalbiosurfactantshaveshownantimicrobialactionagainstbacteria,fungi(真菌),algae(藻类)andviruses.
Thelipopeptideiturin(脂肽伊枯草菌素)fromB.subtilis(枯草芽孢杆菌)showedpotentantifungalactivity.
AntimicrobialactivityAProduction
Biosurfactantsdonotcompeteeconomicallywithsyntheticsurfactants.Toreduceproductioncosts,othercarbonsources,suchasoliveoil(橄榄油),milleffluent(工厂废水),whey(乳清)fromcheesemaking,andcassavaflourwater(木薯粉水),usedvegetableoils,molasses(糖浆)(by-product).
Biosurfactantshavebeensynthesizedbyvariousresearchersusingdifferentmicroorganismsandcarbonsources.Thecarbonsourcesusedforbiosurfactantproductionarehydrocarbons,
carbohydrates,andvegetableoils.ProductionBiosurfactanProductionmethodsNaturalbiologicalextractmethod、Microorganismfermentationmethod、EnzymecatalyticmethodPurificationmethodsPrecipitationmethod、Extractionmethod、Superfilteringmethod、Foamseparationmethod、Adsorptionmethod、Columnchromatographymethod、Thinlayerchromatographymethod、Highperformanceliquidchromatographymethod、Liquidsurfaceadsorptionenrichmentmethod、Liquidmembraneseparationmethod.ProductionmethodsFig.2.Structureoffourdifferentrhamnolipidsproducedby
P.aeruginosa.Fig.2.Structureoffourd生物表面活性剂课件FactorsAffectingBiosurfactant
ProductionEffectofCarbonSourceonBiosurfactantsProduction
carbohydratehydrocarbonvegetableoilsFactorsAffectingBiosurfactanEffectofSupportMaterialandRelationshipwithWater
Supportmaterialforimmobilizedenzymeaffectsthe
watercontentintheproximityoftheenzymeandthe
partitioningofreactantsand/orproductsinthereaction
mixture.Sincethermalstabilityiscloselyrelatedtothe
amountofwaterinclosevicinityoftheenzymesmolecule.Theidealcarriershouldnotretainwaterthan
necessarytoreducetheriskofenzymedenaturation(变性).
Immobilizationonhydrophilicsupportsoftenleads
toalossoflipase(脂肪酶)activityastheenzymeundergoesa
conformational(构象)changetoaformofreducedactivity.
Thesesupportmaterialsmayalsoreducehydrophobic
substratesolubilityinhydrophilicregions,thereby
reducingthe
accessibilityofsubstratetotheactivesites.EffectofSupportMaterialandEffectofEnvironmentalFactorsonBiosurfactantsProduction
pHtemperatureagitation(搅拌)speedoxygenavailabilityRhamnolipidproductioninpseudomonassp(假单胞菌)wasitsmaximumatapHrangefrom
6to
6.5and
decreasedsharplyabovepH7.
Inaddition,surfacetensionandCMCsofabiosurfactantproduct
remainedstableoverawiderangeofpHvalues,whereasemulsificationhadanarrowerpHrange.EffectofEnvironmentalFactor
AthermophilicBacillussp(芽孢杆菌)grewandproducedbiosurfactantattemperatureabove40℃.Heattreatmentofsomebiosurfactantscausednoappreciablechangeinbiosurfactantproperties,suchastheloweringofthesurfacetensionandinterfacialtensionandtheemulsificationefficiency,allofthatremainedstableafterautoclaving(高压灭菌)at120℃for15min.
AnincreaseinagitationspeedresultinthereductionofbiosurfactantyieldduetotheeffectofshearinNocardia(土壤丝菌属).Onotherhand,inyeast,biosurfactantproductionincreaseswhentheagitationandaerationratesareincreased.
Saltconcentrationalsoaffectedbiosurfactantproductiondependingonitseffectsoncellularactivity.Some
biosurfactantproducts,however,werenotaffectedby
saltconcentrationsupto10%(wt/vol),althoughslight
reductionintheCMCsweredetected.AthermophilicBacillusspamodifieddrop-collapsetechniqueforsurfactantquantitationandscreeningofbiosurfactantproducingmicroorganismsQualitativedrop-collapsetestAdropofwaterappliedtoahydrophobicsurfaceintheabsenceofsurfactantswillformabead,asshowninFig.1(A).Thebeadforms
becausethepolarwatermoleculesarerepelledfromthehydrophobicsurface.Incontrast,ifthewaterdropletcontainssurfactant,theforceorinterfacialtensionbetweenthewaterdropandthehydrophobicsurfaceisreduced,whichresultsinthespreadingofthewaterdropoverthehydrophobicsurface(Fig.1,B).Theamountofsurfactantrequiredtocausedrop-collapseisdependentontheabilityofthesurfactanttoreducesurfaceandinterfacialtension.Themorepotentthesurfactant,thesmallerthequantitythatcanbedetected.
(A)Watercontrol(nosurfactant),(B)1000mg/Lrhamnolipid.amodifieddrop-collapsetechsurfactantquantitationbythedrop-collapseQuantitativedrop-collapsemethod:(A)Watercontrol,(B)25mg/Lrhamnolipid,(C)50mg/Lrhamnolipid,(D)75mg/Lrhamnolipidand(E)100mg/Lrhamnolipid.Inthiscase,asthesurfactantconcentrationincreased,thediameterofthesampledropincreased.surfactantquantitationbytheQuantitativeresultsfortwosurfactants,rhamnolipidandSDS,arepresentedasstandardcurvesinFig.2.Alinearcorrelationwasfoundbetweentherhamnolipidconcentrationandthedropdiameter,intherangeof0to100mg/L,withanr2=of0.997(Fig.2A).ForSDS(Fig.2B),concentrationsbetween0and2400mg/Lwerelinearlycorrelatedwithdropdiameter(r2=50.989).Fig.2.Thequantitativedrop-collapsemethod.Thefigureshowstheresultsobtainedwithtwodifferentsurfactants:(A)P.aeruginosaIGB83withaCMCof27mg/Land(B)SDSwithaCMCof1845mg/L.Eachpointrepresentsthemea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校车安全教育培训内容-20211117111852
- 招生简章-中央警察大学
- 湖北汽车工业学院科技学院《管理沟通》2023-2024学年第一学期期末试卷
- 湖北汽车工业学院《自动化专业英语》2022-2023学年第一学期期末试卷
- 自动化仓储系统-详解
- 《红外吸收光谱实验》课件
- 《秋天的唯美意境》课件
- 汨罗江畔 课件
- 烟站驾驶员拉水安全协议书范本(2篇)
- 施工合同范本(2篇)
- 2024年永安市交通发展集团有限公司招聘笔试冲刺题(带答案解析)
- 中国法律史-第二次平时作业-国开-参考资料
- 2024年中粮集团有限公司校园招聘考试试题完美版
- 人物往来与中日文化交流史智慧树知到期末考试答案章节答案2024年浙江工商大学
- 青岛版五年级数学上册第七单元《绿色家园-折线统计图》(大单元教学设计)
- GB/T 2820.9-2024往复式内燃机驱动的交流发电机组第9部分:机械振动的测量和评价
- 特种设备作业人员全年培训计划
- 部编版五年级道德与法治上册第8课《美丽文字 民族瑰宝》精美课件
- 《研学旅行课程设计》课件-学习情境二 研之有义-研学课程整体设计
- 2024-2025年上半学期(三年级)教科版上册科学期中试卷【A4可打印】
- 人教版物理八年级上册第六章质量和密度大单元整体教学设计
评论
0/150
提交评论