生物表面活性剂课件_第1页
生物表面活性剂课件_第2页
生物表面活性剂课件_第3页
生物表面活性剂课件_第4页
生物表面活性剂课件_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

生物表面活性剂生物表面活性剂Introduction

Biosurfactants(amphiphiliccompounds)(synthesizedbymicroorganisms)hydrophobic(nonpolar)hydrophilic(polar)thatconferabilitytoaccumulatebetweenfluidphasessuchasoil/waterorair/water,reducingthesurfaceandinterfacialtensionsandformingemulsions.household、industryandagriculturemono-,oligo-orpolysaccharides(多糖),peptides(缩氨酸)orproteinssaturated,unsaturatedandhydroxylatedfattyacidsorfattyalcoholsIntroductionBiosurfactant生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件PropertiesSurfaceandinterfaceactivitybiodegradability(bioremediation).emulsifying

anddemulsifyingabilityantimicrobialactivityPropertiesSurfaceandinterfacSurfaceandinterfaceactivity

Ingeneral,biosurfactantsaremoreeffectiveandefficientandtheirCMC(criticalmicelleconcentration)isabout10-40timeslowerthanchemicalsurfactants,i.e.,lesssurfactantisnecessarytogetamaximaldecreaseonST.

Agoodsurfactantcanlowersurfacetension(ST)ofwaterfrom72to35mN/mandtheinterfacialtension(IT)water/hexadecane(十六烷)from40to1mN/m.SurfaceandinterfaceactivityThebiosurfactantsaccumulateattheinterfacebetweentwoimmisciblefluidsorbetweenafluidandasolid..(figure1)Byreducingsurface(liquid-air)andinterfacial(liquid-liquid)tensiontheyreducetherepulsiveforcesbetweentwodissimilarphasesandallowthesetwophasestomixandinteractmoreeasilyThebiosurfactantsaccumulateBiosurfactantactivitiesdependontheconcentrationofthesurface-activecompoundsuntilthecriticalmicelleconcentration(CMC)isobtained.AtconcentrationsabovetheCMC,biosurfactantmoleculesassociatetoformmicelles,bilayersandvesicles(Figure2).TheCMCiscommonlyusedtomeasuretheefficiencyofsurfactant.EfficientbiosurfactantshavealowCMC,whichmeansthatlessbiosurfactantisrequiredtodecreasethesurfacetension.Biosurfactantactivitiesdepe

Thebiosurfactanteffectivenessisdeterminedbymeasuringitsabilitytochangesurfaceandinterfacialtensions,stabilizationofemulsionsandbystudyingitshydrophilic-lipophilicbalance(HLB).EmulsifierswithlowHLBarelipophilicandstabilizewater-in-oilemulsification,whereasemulsifierswithhighHLBhavetheoppositeeffectandconferbetterwatersolubility

Lowtoxicity

Forexample:AbiosurfactantfromP.aeruginosa(绿脓假单胞菌)(wascomparedwithasyntheticsurfactant(MarlonA-350)widelyusedinindustryintermsoftoxicityandmutagenicproperties.Bothassaysindicatedthehighertoxicityandmutageniceffectofthechemical-derivedsurfactantwhereasbiosurfactantwasconsideredslightlytonon-toxicandnon-mutagenic.lowornon-toxicproductsandtherefore,appropriateforpharmaceutical,cosmeticandfooduses.LowtoxicityForexample:AEmulsionformingandemulsionbreaking

Anemulsionisaheterogeneoussystem,consistingofatleastoneimmiscibleliquidintimatelydispersedinanotherintheformofdroplets,whosediameteringeneralexceeds0.1µm.Emulsionshaveaninternalordispersedandanexternalorcontinuousphase,sotherearegenerallytwotypes:oil-in-water(o/w)orwater-in-oil(w/o)emulsions.

Suchsystemspossessaminimalstability,whichmaybeaccentuatedbyadditivessuchassurface-activeagents(surfactants).Thus,stableemulsionscanbeproducedwithalifespanofmonthsandyears.Biosurfactantsmaystabilize(emulsifiers)ordestabilize(de-emulsifiers)theemulsion.High-molecular-massbiosurfactantsareingeneralbetteremulsifiersthanlow-molecular-massbiosurfactants.EmulsionformingandemulsionAntimicrobialactivity

Asignificativereductiononthemycoflora(真菌群)presentinstoredgrainsofcorn,peanutsandcottonseedswasobservedatiturinconcentrationof50-100ppm).Inactivationofenvelopedvirussuchasherpes(疱疹)andretrovirus(逆转录酶病毒)wasobservedwith80mMofsurfactin(脂肽).

Severalbiosurfactantshaveshownantimicrobialactionagainstbacteria,fungi(真菌),algae(藻类)andviruses.

Thelipopeptideiturin(脂肽伊枯草菌素)fromB.subtilis(枯草芽孢杆菌)showedpotentantifungalactivity.

AntimicrobialactivityAProduction

Biosurfactantsdonotcompeteeconomicallywithsyntheticsurfactants.Toreduceproductioncosts,othercarbonsources,suchasoliveoil(橄榄油),milleffluent(工厂废水),whey(乳清)fromcheesemaking,andcassavaflourwater(木薯粉水),usedvegetableoils,molasses(糖浆)(by-product).

Biosurfactantshavebeensynthesizedbyvariousresearchersusingdifferentmicroorganismsandcarbonsources.Thecarbonsourcesusedforbiosurfactantproductionarehydrocarbons,

carbohydrates,andvegetableoils.ProductionBiosurfactanProductionmethodsNaturalbiologicalextractmethod、Microorganismfermentationmethod、EnzymecatalyticmethodPurificationmethodsPrecipitationmethod、Extractionmethod、Superfilteringmethod、Foamseparationmethod、Adsorptionmethod、Columnchromatographymethod、Thinlayerchromatographymethod、Highperformanceliquidchromatographymethod、Liquidsurfaceadsorptionenrichmentmethod、Liquidmembraneseparationmethod.ProductionmethodsFig.2.Structureoffourdifferentrhamnolipidsproducedby

P.aeruginosa.Fig.2.Structureoffourd生物表面活性剂课件FactorsAffectingBiosurfactant

ProductionEffectofCarbonSourceonBiosurfactantsProduction

carbohydratehydrocarbonvegetableoilsFactorsAffectingBiosurfactanEffectofSupportMaterialandRelationshipwithWater

Supportmaterialforimmobilizedenzymeaffectsthe

watercontentintheproximityoftheenzymeandthe

partitioningofreactantsand/orproductsinthereaction

mixture.Sincethermalstabilityiscloselyrelatedtothe

amountofwaterinclosevicinityoftheenzymesmolecule.Theidealcarriershouldnotretainwaterthan

necessarytoreducetheriskofenzymedenaturation(变性).

Immobilizationonhydrophilicsupportsoftenleads

toalossoflipase(脂肪酶)activityastheenzymeundergoesa

conformational(构象)changetoaformofreducedactivity.

Thesesupportmaterialsmayalsoreducehydrophobic

substratesolubilityinhydrophilicregions,thereby

reducingthe

accessibilityofsubstratetotheactivesites.EffectofSupportMaterialandEffectofEnvironmentalFactorsonBiosurfactantsProduction

pHtemperatureagitation(搅拌)speedoxygenavailabilityRhamnolipidproductioninpseudomonassp(假单胞菌)wasitsmaximumatapHrangefrom

6to

6.5and

decreasedsharplyabovepH7.

Inaddition,surfacetensionandCMCsofabiosurfactantproduct

remainedstableoverawiderangeofpHvalues,whereasemulsificationhadanarrowerpHrange.EffectofEnvironmentalFactor

AthermophilicBacillussp(芽孢杆菌)grewandproducedbiosurfactantattemperatureabove40℃.Heattreatmentofsomebiosurfactantscausednoappreciablechangeinbiosurfactantproperties,suchastheloweringofthesurfacetensionandinterfacialtensionandtheemulsificationefficiency,allofthatremainedstableafterautoclaving(高压灭菌)at120℃for15min.

AnincreaseinagitationspeedresultinthereductionofbiosurfactantyieldduetotheeffectofshearinNocardia(土壤丝菌属).Onotherhand,inyeast,biosurfactantproductionincreaseswhentheagitationandaerationratesareincreased.

Saltconcentrationalsoaffectedbiosurfactantproductiondependingonitseffectsoncellularactivity.Some

biosurfactantproducts,however,werenotaffectedby

saltconcentrationsupto10%(wt/vol),althoughslight

reductionintheCMCsweredetected.AthermophilicBacillusspamodifieddrop-collapsetechniqueforsurfactantquantitationandscreeningofbiosurfactantproducingmicroorganismsQualitativedrop-collapsetestAdropofwaterappliedtoahydrophobicsurfaceintheabsenceofsurfactantswillformabead,asshowninFig.1(A).Thebeadforms

becausethepolarwatermoleculesarerepelledfromthehydrophobicsurface.Incontrast,ifthewaterdropletcontainssurfactant,theforceorinterfacialtensionbetweenthewaterdropandthehydrophobicsurfaceisreduced,whichresultsinthespreadingofthewaterdropoverthehydrophobicsurface(Fig.1,B).Theamountofsurfactantrequiredtocausedrop-collapseisdependentontheabilityofthesurfactanttoreducesurfaceandinterfacialtension.Themorepotentthesurfactant,thesmallerthequantitythatcanbedetected.

(A)Watercontrol(nosurfactant),(B)1000mg/Lrhamnolipid.amodifieddrop-collapsetechsurfactantquantitationbythedrop-collapseQuantitativedrop-collapsemethod:(A)Watercontrol,(B)25mg/Lrhamnolipid,(C)50mg/Lrhamnolipid,(D)75mg/Lrhamnolipidand(E)100mg/Lrhamnolipid.Inthiscase,asthesurfactantconcentrationincreased,thediameterofthesampledropincreased.surfactantquantitationbytheQuantitativeresultsfortwosurfactants,rhamnolipidandSDS,arepresentedasstandardcurvesinFig.2.Alinearcorrelationwasfoundbetweentherhamnolipidconcentrationandthedropdiameter,intherangeof0to100mg/L,withanr2=of0.997(Fig.2A).ForSDS(Fig.2B),concentrationsbetween0and2400mg/Lwerelinearlycorrelatedwithdropdiameter(r2=50.989).Fig.2.Thequantitativedrop-collapsemethod.Thefigureshowstheresultsobtainedwithtwodifferentsurfactants:(A)P.aeruginosaIGB83withaCMCof27mg/Land(B)SDSwithaCMCof1845mg/L.Eachpointrepresentsthemeanandstandarddeviationoffivereplicatesfromexperimentsthatwerecarriedoutintriplicate.Quantitativeresultsfortwo

PotentialCommercial

Applications

Mostsurfactantsarechemicallysynthesized.Nevertheless,inrecentyears,muchattentionhasbeendirectedtowardbiosurfactantsduetotheirbroad-rangefunctionalpropertiesandthediversesyntheticcapabilitiesofmicrobes.Mostimportantistheirenvironmentalacceptability,becausetheyarereadilybiodegradableandhavelowertoxicitythansyntheticsurfactants.Anumberofapplicationsof

biosurfactantshavebeenenvisaged.MEOR、FoodIndustry、CosmeticIndustry、MedicinalUse、Soil

BioremediationPotentialCommercialApplicatBiosurfactantsinMicrobialEnhancedOilRecovery(MEOR)

Fig.Mechanismofenhancedoilrecoverybybiosurfactants.theoilistrappedintheporesbycapillary

pressure.

Biosurfactantsreduceinterfacialtensionbetweenoil/waterandoil/rock.Thisreducesthecapillaryforcespreventingoilfrommovingthroughrockpores.Biosurfactantscanalsobindtightlytotheoil-waterinterfaceandformemulsion.Thisstabilizesthedesorbedoilinwaterandallowsremovalofoilalongwiththeinjectionwater.

BiosurfactantsinMicrobialETheApplicationofBiosurfactantsforSoil

BioremediationThebiologicalremediationprocesscanbeperformed(i)insitu(ii)inapreparedbed(

iii)inaslurryreactorsystemInsituprocessesareusuallyaccomplishedbyadditionofmicrobialnutrientstothesoil,whichallowsconsiderablegrowthofsoilmicrobialindigenouspopulation.Thusincreasedmicrobialbiomassinthesoil.(fig1)TheApplicationofBiosurfacta生物表面活性剂课件Figure3Mechanismofbiosurfactantactivityinmetal-contaminatedsoilduetotheloweringoftheinterfacialtension.Figure3MechanismofbiosurfConclusion

Advantage:

higherbiodegradability,betterenvironmentalcompatibility,higherfoaming,highselectivityandhighspecificactivityatextremetemperature,pHandsalinity.

Therethedemandofbiosurfactantsisincreasingworldwideinrecentyears.However,biosurfactantsdonoteconomicallycompetewithchemicallysynthesizedsurfactants.That’swhythereisagreatscopeforfurtherresearchtofindamoreeconomicalproductionprocessandtechnology.ConclusionAdvantage:higherThankYouThankYou

结束语谢谢大家聆听!!!35

结束语谢谢大家聆听!!!35生物表面活性剂生物表面活性剂Introduction

Biosurfactants(amphiphiliccompounds)(synthesizedbymicroorganisms)hydrophobic(nonpolar)hydrophilic(polar)thatconferabilitytoaccumulatebetweenfluidphasessuchasoil/waterorair/water,reducingthesurfaceandinterfacialtensionsandformingemulsions.household、industryandagriculturemono-,oligo-orpolysaccharides(多糖),peptides(缩氨酸)orproteinssaturated,unsaturatedandhydroxylatedfattyacidsorfattyalcoholsIntroductionBiosurfactant生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件生物表面活性剂课件PropertiesSurfaceandinterfaceactivitybiodegradability(bioremediation).emulsifying

anddemulsifyingabilityantimicrobialactivityPropertiesSurfaceandinterfacSurfaceandinterfaceactivity

Ingeneral,biosurfactantsaremoreeffectiveandefficientandtheirCMC(criticalmicelleconcentration)isabout10-40timeslowerthanchemicalsurfactants,i.e.,lesssurfactantisnecessarytogetamaximaldecreaseonST.

Agoodsurfactantcanlowersurfacetension(ST)ofwaterfrom72to35mN/mandtheinterfacialtension(IT)water/hexadecane(十六烷)from40to1mN/m.SurfaceandinterfaceactivityThebiosurfactantsaccumulateattheinterfacebetweentwoimmisciblefluidsorbetweenafluidandasolid..(figure1)Byreducingsurface(liquid-air)andinterfacial(liquid-liquid)tensiontheyreducetherepulsiveforcesbetweentwodissimilarphasesandallowthesetwophasestomixandinteractmoreeasilyThebiosurfactantsaccumulateBiosurfactantactivitiesdependontheconcentrationofthesurface-activecompoundsuntilthecriticalmicelleconcentration(CMC)isobtained.AtconcentrationsabovetheCMC,biosurfactantmoleculesassociatetoformmicelles,bilayersandvesicles(Figure2).TheCMCiscommonlyusedtomeasuretheefficiencyofsurfactant.EfficientbiosurfactantshavealowCMC,whichmeansthatlessbiosurfactantisrequiredtodecreasethesurfacetension.Biosurfactantactivitiesdepe

Thebiosurfactanteffectivenessisdeterminedbymeasuringitsabilitytochangesurfaceandinterfacialtensions,stabilizationofemulsionsandbystudyingitshydrophilic-lipophilicbalance(HLB).EmulsifierswithlowHLBarelipophilicandstabilizewater-in-oilemulsification,whereasemulsifierswithhighHLBhavetheoppositeeffectandconferbetterwatersolubility

Lowtoxicity

Forexample:AbiosurfactantfromP.aeruginosa(绿脓假单胞菌)(wascomparedwithasyntheticsurfactant(MarlonA-350)widelyusedinindustryintermsoftoxicityandmutagenicproperties.Bothassaysindicatedthehighertoxicityandmutageniceffectofthechemical-derivedsurfactantwhereasbiosurfactantwasconsideredslightlytonon-toxicandnon-mutagenic.lowornon-toxicproductsandtherefore,appropriateforpharmaceutical,cosmeticandfooduses.LowtoxicityForexample:AEmulsionformingandemulsionbreaking

Anemulsionisaheterogeneoussystem,consistingofatleastoneimmiscibleliquidintimatelydispersedinanotherintheformofdroplets,whosediameteringeneralexceeds0.1µm.Emulsionshaveaninternalordispersedandanexternalorcontinuousphase,sotherearegenerallytwotypes:oil-in-water(o/w)orwater-in-oil(w/o)emulsions.

Suchsystemspossessaminimalstability,whichmaybeaccentuatedbyadditivessuchassurface-activeagents(surfactants).Thus,stableemulsionscanbeproducedwithalifespanofmonthsandyears.Biosurfactantsmaystabilize(emulsifiers)ordestabilize(de-emulsifiers)theemulsion.High-molecular-massbiosurfactantsareingeneralbetteremulsifiersthanlow-molecular-massbiosurfactants.EmulsionformingandemulsionAntimicrobialactivity

Asignificativereductiononthemycoflora(真菌群)presentinstoredgrainsofcorn,peanutsandcottonseedswasobservedatiturinconcentrationof50-100ppm).Inactivationofenvelopedvirussuchasherpes(疱疹)andretrovirus(逆转录酶病毒)wasobservedwith80mMofsurfactin(脂肽).

Severalbiosurfactantshaveshownantimicrobialactionagainstbacteria,fungi(真菌),algae(藻类)andviruses.

Thelipopeptideiturin(脂肽伊枯草菌素)fromB.subtilis(枯草芽孢杆菌)showedpotentantifungalactivity.

AntimicrobialactivityAProduction

Biosurfactantsdonotcompeteeconomicallywithsyntheticsurfactants.Toreduceproductioncosts,othercarbonsources,suchasoliveoil(橄榄油),milleffluent(工厂废水),whey(乳清)fromcheesemaking,andcassavaflourwater(木薯粉水),usedvegetableoils,molasses(糖浆)(by-product).

Biosurfactantshavebeensynthesizedbyvariousresearchersusingdifferentmicroorganismsandcarbonsources.Thecarbonsourcesusedforbiosurfactantproductionarehydrocarbons,

carbohydrates,andvegetableoils.ProductionBiosurfactanProductionmethodsNaturalbiologicalextractmethod、Microorganismfermentationmethod、EnzymecatalyticmethodPurificationmethodsPrecipitationmethod、Extractionmethod、Superfilteringmethod、Foamseparationmethod、Adsorptionmethod、Columnchromatographymethod、Thinlayerchromatographymethod、Highperformanceliquidchromatographymethod、Liquidsurfaceadsorptionenrichmentmethod、Liquidmembraneseparationmethod.ProductionmethodsFig.2.Structureoffourdifferentrhamnolipidsproducedby

P.aeruginosa.Fig.2.Structureoffourd生物表面活性剂课件FactorsAffectingBiosurfactant

ProductionEffectofCarbonSourceonBiosurfactantsProduction

carbohydratehydrocarbonvegetableoilsFactorsAffectingBiosurfactanEffectofSupportMaterialandRelationshipwithWater

Supportmaterialforimmobilizedenzymeaffectsthe

watercontentintheproximityoftheenzymeandthe

partitioningofreactantsand/orproductsinthereaction

mixture.Sincethermalstabilityiscloselyrelatedtothe

amountofwaterinclosevicinityoftheenzymesmolecule.Theidealcarriershouldnotretainwaterthan

necessarytoreducetheriskofenzymedenaturation(变性).

Immobilizationonhydrophilicsupportsoftenleads

toalossoflipase(脂肪酶)activityastheenzymeundergoesa

conformational(构象)changetoaformofreducedactivity.

Thesesupportmaterialsmayalsoreducehydrophobic

substratesolubilityinhydrophilicregions,thereby

reducingthe

accessibilityofsubstratetotheactivesites.EffectofSupportMaterialandEffectofEnvironmentalFactorsonBiosurfactantsProduction

pHtemperatureagitation(搅拌)speedoxygenavailabilityRhamnolipidproductioninpseudomonassp(假单胞菌)wasitsmaximumatapHrangefrom

6to

6.5and

decreasedsharplyabovepH7.

Inaddition,surfacetensionandCMCsofabiosurfactantproduct

remainedstableoverawiderangeofpHvalues,whereasemulsificationhadanarrowerpHrange.EffectofEnvironmentalFactor

AthermophilicBacillussp(芽孢杆菌)grewandproducedbiosurfactantattemperatureabove40℃.Heattreatmentofsomebiosurfactantscausednoappreciablechangeinbiosurfactantproperties,suchastheloweringofthesurfacetensionandinterfacialtensionandtheemulsificationefficiency,allofthatremainedstableafterautoclaving(高压灭菌)at120℃for15min.

AnincreaseinagitationspeedresultinthereductionofbiosurfactantyieldduetotheeffectofshearinNocardia(土壤丝菌属).Onotherhand,inyeast,biosurfactantproductionincreaseswhentheagitationandaerationratesareincreased.

Saltconcentrationalsoaffectedbiosurfactantproductiondependingonitseffectsoncellularactivity.Some

biosurfactantproducts,however,werenotaffectedby

saltconcentrationsupto10%(wt/vol),althoughslight

reductionintheCMCsweredetected.AthermophilicBacillusspamodifieddrop-collapsetechniqueforsurfactantquantitationandscreeningofbiosurfactantproducingmicroorganismsQualitativedrop-collapsetestAdropofwaterappliedtoahydrophobicsurfaceintheabsenceofsurfactantswillformabead,asshowninFig.1(A).Thebeadforms

becausethepolarwatermoleculesarerepelledfromthehydrophobicsurface.Incontrast,ifthewaterdropletcontainssurfactant,theforceorinterfacialtensionbetweenthewaterdropandthehydrophobicsurfaceisreduced,whichresultsinthespreadingofthewaterdropoverthehydrophobicsurface(Fig.1,B).Theamountofsurfactantrequiredtocausedrop-collapseisdependentontheabilityofthesurfactanttoreducesurfaceandinterfacialtension.Themorepotentthesurfactant,thesmallerthequantitythatcanbedetected.

(A)Watercontrol(nosurfactant),(B)1000mg/Lrhamnolipid.amodifieddrop-collapsetechsurfactantquantitationbythedrop-collapseQuantitativedrop-collapsemethod:(A)Watercontrol,(B)25mg/Lrhamnolipid,(C)50mg/Lrhamnolipid,(D)75mg/Lrhamnolipidand(E)100mg/Lrhamnolipid.Inthiscase,asthesurfactantconcentrationincreased,thediameterofthesampledropincreased.surfactantquantitationbytheQuantitativeresultsfortwosurfactants,rhamnolipidandSDS,arepresentedasstandardcurvesinFig.2.Alinearcorrelationwasfoundbetweentherhamnolipidconcentrationandthedropdiameter,intherangeof0to100mg/L,withanr2=of0.997(Fig.2A).ForSDS(Fig.2B),concentrationsbetween0and2400mg/Lwerelinearlycorrelatedwithdropdiameter(r2=50.989).Fig.2.Thequantitativedrop-collapsemethod.Thefigureshowstheresultsobtainedwithtwodifferentsurfactants:(A)P.aeruginosaIGB83withaCMCof27mg/Land(B)SDSwithaCMCof1845mg/L.Eachpointrepresentsthemea

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论