


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
押/r/n第/r/n22/r/n题/r/n/r/n导数/r/n/r/n/r/n命题研究/r/n导数的应用也/r/n一直是高考的热点,尤其是导数与函数的单调性、极值、最/r/n值问题/r/n是高考考查的重点内容,有时也会考查导数的运算/r/n、/r/n导数的几何意义等/r/n,比较综合/r/n./r/n解题秘籍/r/n1/r/n./r/n导数的几何意义的应用/r/n:/r/n(/r/n1/r/n)已知切点/r/nP/r/n(/r/nx/r/n0/r/n,/r/ny/r/n0/r/n)/r/n,求/r/ny/r/n=/r/nf/r/n(/r/nx/r/n)/r/n过点/r/nP/r/n的切线方程:求出切线的斜率/r/nf/r/n′(/r/nx/r/n0/r/n)/r/n,由点斜式写出方程;/r/n(/r/n2/r/n)已知切线的斜率为/r/nk/r/n,求/r/ny/r/n=/r/nf/r/n(/r/nx/r/n)/r/n的切线方程:设切点/r/nP/r/n(/r/nx/r/n0/r/n,/r/ny/r/n0/r/n)/r/n,通过方程/r/nk/r/n=/r/nf/r/n′(/r/nx/r/n0/r/n)/r/n解得/r/nx/r/n0/r/n,再由点斜式写出方程;/r/n(/r/n3/r/n)已知切线上一点/r/n(/r/n非切点/r/n)/r/n,求/r/ny/r/n=/r/nf/r/n(/r/nx/r/n)/r/n的切线方程:设切点/r/nP/r/n(/r/nx/r/n0/r/n,/r/ny/r/n0/r/n)/r/n,利用导数求得切线斜率/r/nf/r/n′(/r/nx/r/n0/r/n)/r/n,再由斜率公式求得切线斜率,列方程/r/n(/r/n组/r/n)/r/n解得/r/nx/r/n0/r/n,最后由点斜式或两点式写出方程./r/n(/r/n4/r/n)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由/r/nk/r/n=/r/nf/r/n′(/r/nx/r/n0/r/n)/r/n求出切点坐标/r/n(/r/nx/r/n0/r/n,/r/ny/r/n0/r/n)/r/n,最后写出切线方程./r/n(/r/n5/r/n)/r/n①/r/n在点/r/nP/r/n处的切线即是以/r/nP/r/n为切点的切线,/r/nP/r/n一定在曲线上/r/n./r/n②/r/n过点/r/nP/r/n的切线即切线过点/r/nP/r/n,/r/nP/r/n不一定是切点.因此在求过点/r/nP/r/n的切线方程时,应首先检验点/r/nP/r/n是否在已知曲线上./r/n2/r/n.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式/r/n(/r/n)在给定/r/n区间上恒成立/r/n.一般步骤为:/r/n(/r/n1/r/n)求/r/nf/r/n′(/r/nx/r/n)/r/n;/r/n(/r/n2/r/n)确认/r/nf/r/n′(/r/nx/r/n)/r/n在/r/n(/r/na/r/n,/r/nb/r/n)/r/n内的符号;/r/n(/r/n3/r/n)/r/n作出/r/n结论,/r/n时为增函数,/r/n时为减函数./r/n3/r/n.由函数/r/n的单调性求参数的取值范围的方法/r/n(/r/n1/r/n)可导函数在某一区间上单调,实际上就是在该区间上/r/n(/r/n或/r/n)(/r/n在该区间的任意子区间内都不恒等于/r/n0)/r/n恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;/r/n(/r/n2/r/n)可导函数在某一区间上存在单调区间,实际上就是/r/n(/r/n或/r/n)/r/n在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;/r/n(/r/n3/r/n)若已知/r/n在区间/r/nI/r/n上的单调性,区间/r/nI/r/n中含有参数时,可先求出/r/n的单调区间,令/r/nI/r/n是其单调区间的子集,从而可求出参数的取值范围/r/n./r/n4/r/n.(/r/n1/r/n)求函数/r/n极值的方法:/r/n①/r/n确定函数/r/n的定义域./r/n②/r/n求导函数/r/n./r/n③/r/n求方程/r/n的根./r/n④/r/n检查/r/n在方程的根的左、右两侧的符号,确定极值点.如果左/r/n正右负/r/n,那么/r/n在这个根处取得极大值;如果/r/n左负右正/r/n,那么/r/n在这个根处取得极小值;如果/r/n在这个根的左、右两侧符号不变,则/r/n在这个根处没有极值./r/n(/r/n2/r/n)利用极值求参数的取值范围:确定函数的定义域,/r/n求导数/r/n,求方程/r/n的根的情况,/r/n得关于/r/n参数的方程/r/n(/r/n或不等式/r/n)/r/n,进而确定参数的取值或范围/r/n./r/n5/r/n.求函数/r/nf/r/n(/r/nx/r/n)/r/n在/r/n[/r/na/r/n,/r/nb/r/n]/r/n上最值的方法/r/n(/r/n1/r/n)若函数/r/nf/r/n(/r/nx/r/n)/r/n在/r/n[/r/na/r/n,/r/nb/r/n]/r/n上单调递增或递减,则/r/nf/r/n(/r/na/r/n)/r/n与/r/nf/r/n(/r/nb/r/n)/r/n一个为最大值,一个为最小值./r/n(/r/n2/r/n)若函数/r/nf/r/n(/r/nx/r/n)/r/n在区间/r/n(/r/na/r/n,/r/nb/r/n)/r/n内有极值,先求出函数/r/nf/r/n(/r/nx/r/n)/r/n在区间/r/n(/r/na/r/n,/r/nb/r/n)/r/n上的极值,与/r/nf/r/n(/r/na/r/n)/r/n、/r/nf/r/n(/r/nb/r/n)/r/n比较,其中最大的一个是最大值,最小的一个是最小值./r/n(/r/n3/r/n)函数/r/nf/r/n(/r/nx/r/n)/r/n在区间/r/n(/r/na/r/n,/r/nb/r/n)/r/n上有唯一/r/n一个/r/n极值点时,这个极值点就是最大/r/n(/r/n或最小/r/n)/r/n值点./r/n真题回顾/r/n1/r/n.(/r/n2021·/r/n浙江/r/n·/r/n高考真题)设/r/na/r/n,/r/nb/r/n为实数,且/r/n,函数/r/n(/r/n1/r/n)求函数/r/n的单调区间;/r/n(/r/n2/r/n)若对任意/r/n,函数/r/n有两个不同的零点,求/r/na/r/n的取值范围;/r/n(/r/n3/r/n)当/r/n时,证明:对任意/r/n,函数/r/n有两个不同的零点/r/n,满足/r/n./r/n(/r/n注:/r/n是自然对数的底数/r/n)/r/n【详解】/r/n(1)/r/n,/r/n①/r/n若/r/n,则/r/n,所以/r/n在/r/n上单调递增;/r/n②/r/n若/r/n,/r/n当/r/n时,/r/n单调递减,/r/n当/r/n时,/r/n单调递增/r/n./r/n综上可得,/r/n时,/r/n在/r/n上单调递增;/r/n时,函数的单调减区间为/r/n,单调增区间为/r/n./r/n(2)/r/n有/r/n2/r/n个不同零点/r/n有/r/n2/r/n个不同解/r/n有/r/n2/r/n个不同的解,/r/n令/r/n,则/r/n,/r/n记/r/n,/r/n记/r/n,/r/n又/r/n,所以/r/n时,/r/n时,/r/n,/r/n则/r/n在/r/n单调递减,/r/n单调递增,/r/n,/r/n./r/n即实数/r/n的取值范围是/r/n./r/n(3)/r/n[/r/n方法/r/n一/r/n]/r/n【最优解】:/r/n有/r/n2/r/n个不同零点,则/r/n,故函数的零点一定为正数/r/n./r/n由/r/n(2)/r/n可知有/r/n2/r/n个不同零点,/r/n记较大/r/n者为/r/n,较小者为/r/n,/r/n,/r/n注意到函数/r/n在区间/r/n上单调递减,在区间/r/n上单调递增,/r/n故/r/n,又由/r/n知/r/n,/r/n,/r/n要证/r/n,只需/r/n,/r/n且关于/r/n的函数/r/n在/r/n上单调递增,/r/n所以/r/n只需证/r/n,/r/n只需证/r/n,/r/n只需证/r/n,/r/n,/r/n只需证/r/n在/r/n时为正,/r/n由于/r/n,故函数/r/n单调递增,/r/n又/r/n,故/r/n在/r/n时为正,/r/n从而题中的不等式得证/r/n./r/n[/r/n方法二/r/n]/r/n:分析/r/n+/r/n放缩法/r/n有/r/n2/r/n个不同零点/r/n,不妨设/r/n,由/r/n得/r/n(其中/r/n)./r/n且/r/n./r/n要证/r/n,/r/n只需证/r/n,即证/r/n,/r/n只需证/r/n./r/n又/r/n,所以/r/n,即/r/n./r/n所以/r/n只需证/r/n.而/r/n,所以/r/n,/r/n又/r/n,所以/r/n只需证/r/n./r/n所以/r/n,原命题得证./r/n[/r/n方法三/r/n]/r/n:/r/n若/r/n且/r/n,则满足/r/n且/r/n,由(/r/nⅡ/r/n)知/r/n有两个零点/r/n且/r/n./r/n又/r/n,故进一步有/r/n./r/n由/r/n可得/r/n且/r/n,从而/r/n../r/n因为/r/n,/r/n所以/r/n,/r/n故/r/n只需证/r/n./r/n又因为/r/n在区间/r/n内单调递增,故/r/n只需证/r/n,即/r/n,注意/r/n时有/r/n,故不等式成立./r/n2/r/n.(/r/n2021·/r/n天津/r/n·/r/n高考真题)已知/r/n,函数/r/n./r/n(/r/nI/r/n)求曲线/r/n在点/r/n处的切线方程:/r/n(/r/nII/r/n)证明/r/n存在唯一的极值点/r/n(/r/nIII/r/n)若存在/r/na/r/n,使得/r/n对任意/r/n成立,求实数/r/nb/r/n的取值范围./r/n【详解】/r/n(/r/nI/r/n)/r/n,则/r/n,/r/n又/r/n,则切线方程为/r/n;/r/n(/r/nII/r/n)令/r/n,则/r/n,/r/n令/r/n,则/r/n,/r/n当/r/n时,/r/n,/r/n单调递减;当/r/n时,/r/n,/r/n单调递增,/r/n当/r/n时,/r/n,/r/n,当/r/n时,/r/n,画出/r/n大致图像如下:/r/n所以当/r/n时,/r/n与/r/n仅有一个交点,令/r/n,则/r/n,且/r/n,/r/n当/r/n时,/r/n,则/r/n,/r/n单调递增,/r/n当/r/n时,/r/n,则/r/n,/r/n单调递减,/r/n为/r/n的极大值点,故/r/n存在唯一的极值点;/r/n(/r/nIII/r/n)由(/r/nII/r/n)知/r/n,此时/r/n,/r/n所以/r/n,/r/n令/r/n,/r/n若存在/r/na/r/n,使得/r/n对任意/r/n成立,等价于存在/r/n,使得/r/n,即/r/n,/r/n,/r/n,/r/n当/r/n时,/r/n,/r/n单调递减,当/r/n时,/r/n,/r/n单调递增,/r/n所以/r/n,故/r/n,/r/n所以实数/r/nb/r/n的取值范围/r/n./r/n3/r/n.(/r/n2021·/r/n北京/r/n·/r/n高考真题)已知函数/r/n./r/n(/r/n1/r/n)若/r/n,求曲线/r/n在点/r/n处的切线方程;/r/n(/r/n2/r/n)若/r/n在/r/n处取得极值,求/r/n的单调区间,以及其最大值与最小值./r/n【详解】/r/n(/r/n1/r/n)当/r/n时,/r/n,则/r/n,/r/n,/r/n,/r/n此时,曲线/r/n在点/r/n处的切线方程为/r/n,即/r/n;/r/n(/r/n2/r/n)因为/r/n,则/r/n,/r/n由题意可得/r/n,解得/r/n,/r/n故/r/n,/r/n,列表如下:/r/n增/r/n极大值/r/n减/r/n极小值/r/n增/r/n所以,函数/r/n的增区间为/r/n、/r/n,单调递减区间为/r/n./r/n当/r/n时,/r/n;当/r/n时,/r/n./r/n所以,/r/n,/r/n./r/n4/r/n.(/r/n2021·/r/n全国/r/n·/r/n高考真题)已知函数/r/n./r/n(/r/n1/r/n)讨论/r/n的单调性;/r/n(/r/n2/r/n)从下面两个条件中选一个,证明:/r/n只有一个零点/r/n①/r/n;/r/n②/r/n./r/n【详解】/r/n(1)/r/n由函数的解析式可得:/r/n,/r/n当/r/n时,若/r/n,则/r/n单调递减,/r/n若/r/n,则/r/n单调递增;/r/n当/r/n时,若/r/n,则/r/n单调递增,/r/n若/r/n,则/r/n单调递减,/r/n若/r/n,则/r/n单调递增;/r/n当/r/n时,/r/n在/r/n上单调递增;/r/n当/r/n时,若/r/n,则/r/n单调递增,/r/n若/r/n,则/r/n单调递减,/r/n若/r/n,则/r/n单调递增;/r/n(2)/r/n若选择条件/r/n①/r/n:/r/n由于/r/n,故/r/n,则/r/n,/r/n而/r/n,/r/n而函数在区间/r/n上单调递增,故函数在区间/r/n上有一个零点/r/n./r/n,/r/n由于/r/n,/r/n,故/r/n,/r/n结合函数的单调性可知函数在区间/r/n上没有零点/r/n./r/n综上可得,题中的结论成立/r/n./r/n若选择条件/r/n②/r/n:/r/n由于/r/n,故/r/n,则/r/n,/r/n当/r/n时,/r/n,/r/n,/r/n而函数在区间/r/n上单调递增,故函数在区间/r/n上有一个零点/r/n./r/n当/r/n时,构造函数/r/n,则/r/n,/r/n当/r/n时,/r/n单调递减,/r/n当/r/n时,/r/n单调递增,/r/n注意到/r/n,故/r/n恒/r/n成立,从而有:/r/n,此时:/r/n,/r/n当/r/n时,/r/n,/r/n取/r/n,则/r/n,/r/n即:/r/n,/r/n而函数在区间/r/n上单调递增,故函数在区间/r/n上有一个零点/r/n./r/n,/r/n由于/r/n,/r/n,故/r/n,/r/n结合函数的单调性可知函数在区间/r/n上没有零点/r/n./r/n综上可得,题中的结论成立/r/n./r/n5/r/n.(/r/n2021·/r/n全国/r/n·/r/n高考真题)已知函数/r/n./r/n(/r/n1/r/n)讨论/r/n的单调性;/r/n(/r/n2/r/n)设/r/n,/r/n为两个不相等的正数,且/r/n,证明:/r/n./r/n【详解】/r/n(1)/r/n的定义域为/r/n./r/n由/r/n得,/r/n,/r/n当/r/n时,/r/n;当/r/n时/r/n;当/r/n时,/r/n./r/n故/r/n在区间/r/n内为增函数,在区间/r/n内为减函数,/r/n(2)/r/n[/r/n方法/r/n一/r/n]/r/n:等价转化/r/n由/r/n得/r/n,即/r/n./r/n由/r/n,得/r/n./r/n由(/r/n1/r/n)不妨设/r/n,则/r/n,从而/r/n,得/r/n,/r/n①/r/n令/r/n,/r/n/r/n则/r/n,/r/n当/r/n时,/r/n,/r/n在区间/r/n内为减函数,/r/n,/r/n从而/r/n,所以/r/n,/r/n由(/r/n1/r/n)得/r/n即/r/n./r/n①/r/n令/r/n,则/r/n,/r/n当/r/n时,/r/n,/r/n在区间/r/n内为增函数,/r/n,/r/n从而/r/n,所以/r/n./r/n又由/r/n,可得/r/n,/r/n所以/r/n./r/n②/r/n由/r/n①②/r/n得/r/n./r/n[/r/n方法二/r/n]/r/n【最优解】:/r/n变形为/r/n,所以/r/n./r/n令/r/n.则上式变为/r/n,/r/n于是命题转换为证明:/r/n./r/n令/r/n,则有/r/n,不妨设/r/n./r/n由(/r/n1/r/n)知/r/n,/r/n先证/r/n./r/n要证:/r/n./r/n令/r/n,/r/n则/r/n,/r/n在区间/r/n内单调递增,所以/r/n,即/r/n./r/n再证/r/n./r/n因为/r/n,所以/r/n./r/n令/r/n,/r/n所以/r/n,故/r/n在区间/r/n内单调递增./r/n所以/r/n.故/r/n,即/r/n./r/n综合可知/r/n./r/n[/r/n方法三/r/n]/r/n:比值代换/r/n证明/r/n同证法/r/n2/r/n.以下证明/r/n./r/n不妨设/r/n,则/r/n,/r/n由/r/n得/r/n,/r/n,/r/n要证/r/n,/r/n只需证/r/n,两边取对数得/r/n,/r/n即/r/n,/r/n即证/r/n./r/n记/r/n,则/r/n./r/n记/r/n,则/r/n,/r/n所以,/r/n在区间/r/n内单调递减./r/n,则/r/n,/r/n所以/r/n在区间/r/n内单调递减./r/n由/r/n得/r/n,所以/r/n,/r/n即/r/n./r/n[/r/n方法四/r/n]/r/n:构造函数法/r/n由已知得/r/n,令/r/n,/r/n不妨设/r/n,所以/r/n./r/n由(/r/nⅠ/r/n)知,/r/n,/r/n只需证/r/n./r/n证明/r/n同证法/r/n2/r/n./r/n再证明/r/n.令/r/n./r/n令/r/n,则/r/n./r/n所以/r/n,/r/n在区间/r/n内单调递增./r/n因为/r/n,所以/r/n,即/r/n又因为/r/n,所以/r/n,/r/n即/r/n./r/n因为/r/n,所以/r/n,即/r/n./r/n综上,有/r/n结论得证./r/n押题冲关/r/n1/r/n.(/r/n2022·/r/n天津/r/n·/r/n一/r/n模)已知函数/r/n,/r/n./r/n(1)/r/n若曲线/r/n在点/r/n处的切线的斜率为/r/n4/r/n,求/r/na/r/n的值;/r/n(2)/r/n当/r/n时,求/r/n的单调区间;/r/n(3)/r/n已知/r/n的导函数在区间/r/n上存在零点/r/n./r/n求证:当/r/n时,/r/n./r/n【解析】/r/n(1)/r/n函数/r/n的定义域为/r/n,/r/n由/r/n,可得/r/n,/r/n∴/r/n,/r/n所以/r/n./r/n(2)/r/n由(/r/n1/r/n)得/r/n,/r/n,/r/n①/r/n当/r/n时,令/r/n,解得/r/n或/r/n,/r/n令/r/n,解得/r/n./r/n所以,函数/r/n的单调递增区间为/r/n和/r/n,单调递减区间为/r/n./r/n②/r/n当/r/n时,/r/n,所以,函数/r/n的单调递增区间为/r/n,/r/n③/r/n当/r/n时,令/r/n,解得/r/n或/r/n,/r/n令/r/n,解得/r/n,/r/n所以,函数/r/n的单调递增区间为/r/n和/r/n,单调递减区间为/r/n./r/n(3)/r/n因为导函数/r/n在区间/r/n上存在零点,则/r/n,/r/n由(/r/n2/r/n)可知/r/n在/r/n上单调递减,在/r/n单调递增,/r/n所以/r/n在/r/n上的最小值为/r/n,/r/n设/r/n,/r/n,/r/n,/r/n令/r/n,因为/r/n,/r/n所以,/r/n在/r/n上单调递减,/r/n又/r/n,所以/r/n在/r/n上单调递减,/r/n又因为/r/n,/r/n所以/r/n,即/r/n,/r/n所以当/r/n时,/r/n./r/n2/r/n.(/r/n2022·/r/n福建/r/n·/r/n模拟预测)已知函数/r/n./r/n(1)/r/n当/r/n时,求函数/r/n的极值;/r/n(2)/r/n若曲线/r/n有/r/n,/r/n两个零点/r/n./r/n(/r/ni/r/n)求/r/n的取值范围;/r/n(/r/nii/r/n)证明:存在一组/r/n,/r/n(/r/n),使得/r/n的定义域和值域均为/r/n./r/n【解析】/r/n(1)/r/n函数定义域是/r/n,/r/n当/r/n时,/r/n,则,令,解得/r/n,/r/n列表可知/r/n1/r/n+/r/n0/r/n-/r/n单调递增/r/n1/r/n单调递减/r/n的极大值为/r/n,无极小值;/r/n(2)/r/n(/r/ni/r/n)解:由题意可知,/r/n有两解,即/r/n有两解,/r/n设/r/n,则,令,解得/r/n(/r/n舍去),/r/n列表可知,/r/n+/r/n0/r/n-/r/n单调递增/r/n极大值/r/n单调递减/r/n,/r/n因为/r/n有两个零点,所以/r/n,解得/r/n,/r/n当/r/n时,有/r/n,可得/r/n,/r/n令/r/n,有,/r/n时,/r/n./r/n时,/r/n,可得函数/r/n的减区间为/r/n,增区间为/r/n,/r/n有/r/n,可得/r/n,/r/n当/r/n时,/r/n./r/n所以存在/r/n,/r/n,使得/r/n,所以/r/n;/r/n(/r/nii/r/n)证明:因为/r/n,令,解得/r/n,/r/n列表可知,/r/n+/r/n0/r/n-/r/n单调递增/r/n极大值/r/n单调递减/r/n在/r/n上单调递增,在/r/n上单调递减,/r/n①/r/n若/r/n,则/r/n在/r/n上单调递增,因此/r/n,/r/n,由上可/r/n知取/r/n,/r/n,此时/r/n,/r/n,所以当/r/n时,存在一组/r/n,/r/n符合题意;/r/n②/r/n若/r/n,则/r/n在/r/n上单调递减,所以/r/n,/r/n,/r/n所以/r/n,即/r/n,不符题意;/r/n③/r/n若/r/n,/r/n/r/n在/r/n上单调递增,在/r/n上单调递减,/r/n所以/r/n,由/r/n得/r/n,/r/n又因为/r/n,所以/r/n,/r/n即/r/n,/r/n,所以当/r/n时,存在一组/r/n,/r/n符合题意;/r/n综上,存在一组/r/n,/r/n符合题意/r/n./r/n3/r/n.(/r/n2022·/r/n湖南/r/n·/r/n雅礼中学二模)已知函数/r/n,且正数/r/na/r/n,/r/nb/r/n满足/r/n(1)/r/n讨论/r/nf/r/n(/r/nx/r/n)的单调性;/r/n(2)/r/n若/r/n的零点为/r/n,/r/n,且/r/nm/r/n,/r/nn/r/n满足/r/n,求证:/r/n./r/n(/r/n其中/r/n……/r/n是自然对数的底数)/r/n【解析】/r/n(1)/r/n令/r/n,则由题可知/r/n,/r/n即/r/n,所以/r/n,即/r/n,/r/n因为/r/n/r/n,/r/n令/r/n,则/r/n,且对称轴/r/n,/r/n,易得当/r/n时,/r/n在/r/n单调递减,在/r/n单调递增,/r/n当/r/n时,/r/n在/r/n单调递减;/r/n(2)/r/n,/r/n由/r/n且/r/n知/r/n在/r/n单调递增,在/r/n单调递减,/r/n又/r/n,令/r/n,则/r/n,即/r/n,/r/n由(/r/n1/r/n)知/r/n,/r/n,/r/n即有/r/n,/r/n,/r/n两式相减得/r/n,/r/n即/r/n,整理得/r/n./r/n4/r/n.(/r/n2022·/r/n重庆八中模拟预测)已知函数/r/n./r/n(1)/r/n若/r/n在/r/n单调递增,求/r/na/r/n的取值范围/r/n./r/n(2)/r/n若/r/n,且/r/n,求/r/na/r/n./r/n【解析】/r/n(1)/r/n解:因为/r/n定义域为/r/n,/r/n若/r/n时/r/n,所以/r/n在/r/n单调递增,满足条件;/r/n若/r/n时,令/r/n,则/r/n,所以当/r/n时/r/n,即/r/n在/r/n上单调递增,又/r/n,/r/n,/r/n所以/r/n,当/r/n时/r/n,即/r/n,所以/r/n在/r/n上单调递减,/r/n当/r/n时/r/n,即/r/n,所以/r/n在/r/n上单调递增,不符合题意,/r/n综上可得/r/n(2)/r/n解:若/r/n,由(/r/n1/r/n)可知/r/n,/r/n在/r/n上单调递减,在/r/n上单调递增,且/r/n,所以/r/n的最小值为/r/n,/r/n令/r/n,则/r/n,/r/n所以当/r/n时/r/n,当/r/n时/r/n,/r/n故/r/n在/r/n上单调递增,在/r/n上单调递减,所以/r/n,/r/n由/r/n,所以当且仅当/r/n,即/r/n时条件成立,所以/r/n5/r/n.(/r/n2022·/r/n江苏/r/n·/r/n南京市第一中学三模)已知函数/r/n./r/n(1)/r/n证明:/r/n;/r/n(2)/r/n若/r/n,证明:/r/n./r/n【解析】/r/n(1)/r/n解:因为/r/n,/r/n所以/r/n,/r/n所以函数/r/n在/r/n上单调递减,/r/n所以/r/n,即/r/n./r/n(2)/r/n解:由(/r/n1/r/n)/r/n知/r/n,故/r/n,/r/n所以/r/n,/r/n所以,令/r/n,则/r/n,/r/n下面用数学归纳法证明/r/n./r/n①/r/n当/r/n时,/r/n,故成立;/r/n②/r/n假设/r/n时,/r/n,/r/n即/r/n成立,/r/n当/r/n时,/r/n,/r/n由于/r/n所以,当/r/n时,不等式成立/r/n./r/n综上/r/n①②/r/n,不等式/r/n成立/r/n./r/n考前预测/r/n(/r/n限时/r/n:/r/n30/r/n分钟)/r/n1/r/n.记/r/n,/r/n为/r/n的导函数.若对/r/n,/r/n,则称函数/r/n为/r/n上的/r/n“/r/n凸函数/r/n”/r/n.已知函数/r/n,/r/n./r/n(/r/n1/r/n)若函数/r/n为/r/n上的凸函数,求/r/n的取值范围;/r/n(/r/n2/r/n)若函数/r/n在/r/n上有极值,求/r/n的取值范围./r/n【详解】/r/n(/r/n1/r/n)/r/n,/r/n若函数/r/n为/r/n上的凸函数,则/r/n,即/r/n,/r/n令/r/n,/r/n,则当/r/n时,/r/n,/r/n当/r/n时,/r/n;当/r/n时,/r/n;/r/n当/r/n时,/r/n单调递减;当/r/n时,/r/n单调递增,/r/n,/r/n,解得:/r/n,/r/n的取值范围为/r/n./r/n(/r/n2/r/n)/r/n,/r/n,/r/n在/r/n上有极值,/r/n在/r/n有变号零点,/r/n,令/r/n,则/r/n,/r/n,/r/n,/r/n在/r/n上单调递增,/r/n;/r/n①/r/n当/r/n,即/r/n时,/r/n,/r/n在/r/n上单调递增,/r/n.即/r/n,/r/n在/r/n无零点,不合题意;/r/n②/r/n当/r/n,即/r/n时,则/r/n,使得/r/n,/r/n当/r/n时,,/r/n,/r/n单调递减,/r/n又/r/n,当/r/n时,/r/n,/r/n在/r/n上无零点;/r/n当/r/n时,/r/n,/r/n单调递增,/r/n又/r/n时,/r/n,/r/n在/r/n上有零点,且在零点左右两侧/r/n符号相反,即该零点为/r/n的变号零点/r/n,/r/n在/r/n上有极值;/r/n综上所述:/r/n的取值范围为/r/n./r/n2/r/n.已知函数/r/n./r/n(/r/n1/r/n)当/r/n时,求曲线/r/n在点/r/n处的切线方程;/r/n(/r/n2/r/n)求函数/r/n在/r/n的最小值/r/n./r/n【详解】/r/n解:(/r/n1/r/n)当/r/n时,/r/n,/r/n∴/r/n,/r/n又/r/n得切点/r/n,/r/n∴/r/n,/r/n所以切线方程为/r/n,即/r/n;/r/n(/r/n2/r/n)/r/n,/r/n∴/r/n,/r/n令/r/n,/r/n∴/r/n由/r/n,得/r/n,所以/r/n在/r/n上为单调增函数/r/n又/r/n,/r/n所以/r/n在/r/n上恒成立/r/n即/r/n在/r/n恒/r/n成立/r/n当/r/n时,/r/n,知/r/n在/r/n上为减函数,从而/r/n当/r/n时,/r/n,知/r/n在/r/n上为增函数,从而/r/n;/r/n综上,当/r/n时,/r/n;当/r/n时/r/n./r/n3/r/n.已知函数/r/n(/r/n1/r/n)当/r/n时,求在/r/n处的切线方程;/r/n(/r/n2/r/n)若/r/n在定义域上存在极大值,求实数/r/n的取值范围/r/n./r/n【详解】/r/n解:(/r/n1/r/n)/r/n时,/r/n定义域是/r/n,/r/n(/r/n)/r/n所以/r/n,/r/n,切线方程为/r/n即/r/n(/r/n2/r/n)/r/n的定义域是/r/n,求导得/r/n(/r/n)/r/n记/r/n,/r/n①/r/n当/r/n时,令/r/n,/r/n当/r/n时,/r/n单调递减,/r/n当/r/n时,/r/n单调递增;/r/n有极小值没有极大值/r/n./r/n②/r/n当/r/n时,/r/n,/r/n(/r/n负根舍去/r/n)/r/n,/r/n当/r/n时,/r/n单调递减,/r/n当/r/n时,/r/n单调递增;/r/n有极小值没有极大值/r/n./r/n③/r/n当/r/n时,令/r/n得/r/n,则/r/n在/r/n恒/r/n成立,/r/n于是/r/n在/r/n恒/r/n成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私车质押贷款合同
- 个人英语介绍课件
- 两委换届课件
- 实习人员聘用合同
- 专属介绍对象课件
- 【课件】实验:探究加速度与力、质量的关系+课件+-2024-2025学年高一上学期物理人教版(2019)必修第一册
- 肇庆市实验中学高三上学期语文高效课堂教学设计:成语教案二
- 宿迁泽达职业技术学院《中国史学史(下)》2023-2024学年第二学期期末试卷
- 新疆师大附中2025年初三期末试题含解析
- 云贵川高中2024-2025学年高考生物试题原创模拟卷(四)含解析
- 高级财务管理完整版课件
- 怎样学习初中物理
- DB62∕T 25-3111-2016 建筑基坑工程技术规程
- 大班音乐《水果百变秀》课件
- 妇幼保健院医疗保健服务转介工作制度和流程
- 国家职业技能鉴定考评员考试题库1100题【含答案】
- 监察机关执法工作规定学习测试
- 产品鉴定试验大纲
- 2022职业病防治法宣传周PPT
- 常州市武进区征地拆迁房屋装修及附属设施补偿标准
- 民办教师人员花名册
评论
0/150
提交评论