陕西省西安市莲湖区2022-2023学年九年级数学上册期末学业水平测试试题含解析_第1页
陕西省西安市莲湖区2022-2023学年九年级数学上册期末学业水平测试试题含解析_第2页
陕西省西安市莲湖区2022-2023学年九年级数学上册期末学业水平测试试题含解析_第3页
陕西省西安市莲湖区2022-2023学年九年级数学上册期末学业水平测试试题含解析_第4页
陕西省西安市莲湖区2022-2023学年九年级数学上册期末学业水平测试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.某篮球队14名队员的年龄如表:年龄(岁)18192021人数5432则这14名队员年龄的众数和中位数分别是()A.18,19 B.19,19 C.18,4 D.5,42.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定3.如图,在圆O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC交圆O于点D,则CD的最大值为()A. B.2 C. D.4.下列几何体的左视图为长方形的是()A. B. C. D.5.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BAD为()A.40° B.50° C.60° D.70°6.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.3 B.5 C.8 D.107.下列方程没有实数根的是()A.x2﹣x﹣1=0 B.x2﹣6x+5=0 C.x2﹣2x+3=0 D.x2+x+1=08.数据60,70,40,30这四个数的平均数是()A.40 B.50 C.60 D.709.下列事件是随机事件的是()A.三角形内角和为度 B.测量某天的最低气温,结果为C.买一张彩票,中奖 D.太阳从东方升起10.二次函数y=(x﹣4)2+2图象的顶点坐标是()A.(﹣4,2) B.(4,﹣2) C.(4,2) D.(﹣4,﹣2)11.如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是A. B. C. D.12.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30° B.45° C.60° D.75°二、填空题(每题4分,共24分)13.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。14.如图,点,,都在上,连接,,,,,,则的大小是______.15.如图,二次函数的图象与轴交于点,与轴的一个交点为,点在抛物线上,且与点关于抛物线的对称轴对称.已知一次函数的图象经过两点,根据图象,则满足不等式的的取值范围是_____________16.如图,在由边长为1的小正方形组成的网格中.点A,B,C,D都在这些小正方形的格点上,AB、CD相交于点E,则sin∠AEC的值为_____.17.如图,在中,,若,则__________.18.已知关于的方程有两个不相等的实数根,则的取值范围是________.三、解答题(共78分)19.(8分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.20.(8分)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.(1)求抛物线的解析式;(2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,,为顶点的三角形与相似?(3)点为直线上一动点,点为抛物线上一动点,是否存在点,,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.21.(8分)用适当方法解下列方程.(1)(2)22.(10分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?23.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.(1)求证:D是BC的中点(2)若DE=3,AD=1,求⊙O的半径.24.(10分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?25.(12分)山西物产丰富,在历史传承与现代科技进步中,特色农林牧业、农产品加工业、传统手工业不断发展革新,富有地域特色和品牌的士特产品愈加丰富.根据市场调查,下面五种特产比较受人们的青睐:山西汾酒、山西老陈醋、晋中平遥牛肉、山西沁州黄小米、运城芮城麻片,某学校老师带领学生在集市上随机调查了部分市民对“我最喜爱的特产”进行投票,将票数进行统计.绘制了如图所示的条形统计图和扇形统计图(均不完整).请根据图中的信息解答下列问题.直接写出参与投票的人数,并补全条形统计图;若该集市上共有人,请估计该集市喜爱运城芮城麻片的人数;若要从这五种特产中随机抽取出两种特产,请用画树状图或列表的方法,求正好抽到山西汾酒和晋中平遥牛肉的概率.26.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE(1)求证:CF是⊙O的切线;(2)若sin∠BAC=,求的值.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.2、A【解析】先求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案.【详解】解:一元二次方程中,△,则原方程有两个不相等的实数根.故选:A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根3、B【分析】连接OD,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【详解】连接OD,如图,设圆O的半径为r,∵CD⊥OC,∴∠DCO=90°,∴CD=,∴当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B重合,则由垂径定理可得:CD=CB=AC=AB=1,∴CD的最大值为1.故答案为:1.【点睛】本题考查垂径定理和勾股定理,作辅助线构造直角三角形应用勾股定理,并熟记垂径定理内容是解题的关键.4、C【解析】分析:找到每个几何体从左边看所得到的图形即可得出结论.详解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选C.点睛:此题主要考查了简单几何体的三视图,关键是掌握每个几何体从左边看所得到的图形.5、B【分析】连接BD,根据直径所对的圆周角是直角可得∠ADB的度数,然后在根据同弧所对的圆周角相等即可解决问题.【详解】解:如图,连接BD.∵AB是直径,∴∠ADB=90°,∵∠B=∠C=40°,∴∠DAB=90°﹣40°=50°,故选:B.【点睛】本题考查的是直径所对的圆周角是直角与同弧所对的圆周角相等的知识,能够连接BD是解题的关键.6、C【解析】试题分析:在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,而其概率为,因此可得=,解得n=8.故选B.考点:概率的求法7、D【解析】首先根据题意判断上述四个方程的根的情况,只要看根的判别式△=-4ac的值的符号即可.【详解】解:A、∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等的实数根,故本选项错误;B、∵△=b2﹣4ac=36﹣20=16>0,∴方程有两个不相等的实数根,故本选项错误;C、∵△=b2﹣4ac=12﹣12=0,∴方程有两个相等的实数根,故本选项错误;D、∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,故本选项正确.故选:D.【点睛】本题考查根的判别式.一元二次方程的根与△=-4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8、B【分析】用四个数的和除以4即可.【详解】(60+70+40+30)÷4=200÷4=50.故选B.【点睛】本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).9、C【分析】一定发生或是不发生的事件是确定事件,可能发生也可能不发生的事件是随机事件,根据定义判断即可.【详解】A.该事件不可能发生,是确定事件;B.该事件不可能发生,是确定事件;C.该事件可能发生,是随机事件;D.该事件一定发生,是确定事件.故选:C.【点睛】此题考查事件的分类,正确理解确定事件和随机事件的区别并熟练解题是关键.10、C【分析】利用二次函数顶点式可直接得到抛物线的顶点坐标.【详解】解:∵y=(x﹣4)2+2,∴顶点坐标为(4,2),故答案为C.【点睛】本题考查了二次函数的顶点式,掌握顶点式各参数的含义是解答本题的关键.11、B【解析】根据常见几何体的三视图解答即可得.【详解】球的三视图均为圆,故不符合题意;正方体的三视图均为正方形,故不符合题意;圆柱体的主视图与左视图为长方形,俯视图为圆,故符合题意;圆锥的主视图与左视图为等腰三角形,俯视图为圆,故符合题意,故选B.【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义和常见几何体的三视图.12、A【解析】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=∠AOB=30°故选A.二、填空题(每题4分,共24分)13、【分析】易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二层、第三层立方体最少的个数,相加即可.【详解】结合主视图和俯视图可知,第一层、第二层最少各层最少1个,第三层一定有3个,∴组成这个几何体的小正方体的个数最少是1个,故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14、【分析】根据题意可知△ABC是等腰三角形,∠BAO=20°,可得出∠AOB的度数,根据同弧所对的圆周角是圆心角的一半即可得出答案.【详解】解:∵AO=OB∴△AOB是等腰三角形∵∠BAO=20°∴∠OBA=20°,∠AOB=140°∵∠AOB=2∠ACB∴∠ACB=70°故答案为:70°【点睛】本题主要考查的是同弧所对的圆周角是圆心角的一半以及圆的基本性质,掌握这两个知识点是解题的关键.15、【分析】将点A的坐标代入二次函数解析式求出m的值,再根据二次函数解析式求出点C的坐标,然后求出点B的坐标,点A、B之间部分的自变量x的取值范围即为不等式的解集.【详解】解:抛物线经过点抛物线解析式为点坐标对称轴为x=-2,B、C关于对称轴对称,点坐标由图象可知,满足的的取值范围为故答案为:.【点睛】本题考查了利用二次函数的性质来确定系数m和图象上点B的坐标,而根据图象可知满足不等式的的取值范围是在B、A两点之间.16、【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=,由AC∥BD可得△ACE∽△BDE,∴,∴CE=CD=,在Rt△ECF中,sin∠AEC=,故答案为:.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.17、6【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵,∴,∴,∵,∴,,∴.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.18、【详解】根据题意得:△=(﹣2)2-4×m=4-4m>0,解得m<.故答案为m<.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.三、解答题(共78分)19、(1)2;(2)36;(3).【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD绕点B顺时针旋转到△BCE,则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.这样可以求∠DCE=90°,则可以得到DE的长,进而把四边形ABCD的面积转化为△BCD和△BCE的面积之和,△BDE和△CDE的面积容易算出来,则四边形ABCD面积可求;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,则BE=CE=BC,证出△ABE是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE,得出∠EAC=∠ECA==30°,证出∠BAC=∠BAE+∠EAC=90°,得出AC=AB,设AB=x,则AC=x,由直角三角形的性质得出CF=3,从而DF=3,设CG=a,AF=y,证明△ACF∽△CDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2=132,整理得出a=,进而得y=,得出[]2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面积即可得出答案.【详解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵对角互余四边形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=BC=,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=AC=3,CD=2AC=2,∵S△ABC=•AC•BC=××1=,S△ACD═•AC•AD=××3=,∴S四边形ABCD=S△ABC+S△ACD=2,故答案为:2;(2)将△BAD绕点B顺时针旋转到△BCE,如图②所示:则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四边形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE=90°,在△BDE中,根据勾股定理可得:DE===10,∵BD=BE,BH⊥DE,∴EH=DH=5,∴BH===12,∴S△BED=•BH•DE=×12×10=60,S△CED=•CD•CE=×6×8=24,∵△BCE≌△BAD,∴S四边形ABCD=S△BCD+S△BCE=S△BED﹣S△CED=60﹣24=36;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,如图③所示:则BE=CE=BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,AE=BE=CE,∴∠EAC=∠ECA=∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC=AB,设AB=x,则AC=x,∵∠ADC=30°,∴CF=CD=3,DF=CF=3,设CG=a,AF=y,在四边形ABCD中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC=360°,∴∠DAC+∠BCD=180°,∵∠BCD+∠DCG=180°,∴∠DAC=∠DCG,∵∠AFC=∠CGD=90°,∴△ACF∽△CDG,∴=,即=,∴y=,在Rt△ACF中,Rt△CDG和Rt△BDG中,由勾股定理得:y2=(x)2﹣32=3x2﹣9,b2=62﹣a2=102﹣(2x+a)2,(2x+a)2+b2=132,整理得:x2+ax﹣16=0,∴a=,∴y==×=,∴[]2=3x2﹣9,整理得:x4﹣68x2+364=0,解得:x2=34﹣6,或x2=34+6(不合题意舍去),∴x2=34﹣6,∴y2=3(34﹣6)﹣9=93﹣18=93﹣2=()2,∴y=﹣3,∴AF=﹣3,∴AD=AF+DF=,∴△ACD的面积=AD×CF=××3=.【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.20、(1);(2)或时,以点,,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,,;四边形是平行四边形时,,;四边形是平行四边形时,,【分析】(1)根据正方形的性质,可得OA=OC,∠AOC=∠DGE,根据余角的性质,可得∠OCD=∠GDE,根据全等三角形的判定与性质,可得EG=OD=1,DG=OC=2,根据待定系数法,可得函数解析式;(2)分类讨论:若△DFP∽△COD,根据相似三角形的性质,可得∠PDF=∠DCO,根据平行线的判定与性质,可得∠PDO=∠OCP=∠AOC=90,根据矩形的判定与性质,可得PC的长;若△PFD∽△COD,根据相似三角形的性质,可得∠DPF=∠DCO,,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的相似比,可得PC的长;(3)分类讨论:当四边形是平行四边形时,四边形是平行四边形时,四边形是平行四边形时,根据一组对边平行且相等的四边形式平行四边,可得答案.【详解】解:(1)过点作轴于点.∵四边形是边长为2的正方形,是的中点,∴,,.∵,∴.∵,∴.在和中,∴,,.∴点的坐标为.∵抛物线的对称轴为直线即直线,∴可设抛物线的解析式为,将、点的坐标代入解析式,得,解得.∴抛物线的解析式为;(2)①若,则,,∴,∴四边形是矩形,∴,∴;②若,则,∴.∴.∴,∴.∵,∴,∴.∵,∴,,综上所述:或时,以点,,为顶点的三角形与相似:(3)存在,①若以DE为平行四边形的对角线,如图2,此时,N点就是抛物线的顶点(2,),由N、E两点坐标可求得直线NE的解析式为:y=x;∵DM∥EN,∴设DM的解析式为:y=x+b,将D(1,0)代入可求得b=−,∴DM的解析式为:y=x−,令x=2,则y=,∴M(2,);②过点C作CM∥DE交抛物线对称轴于点M,连接ME,如图3,∵CM∥DE,DE⊥CD,∴CM⊥CD,∵OC⊥CB,∴∠OCD=∠BCM,在△OCD和△BCM中,∴△OCD≌△BCM(ASA),∴CM=CD=DE,BM=OD=1,∴CDEM是平行四边形,即N点与C占重合,∴N(0,2),M(2,3);③N点在抛物线对称轴右侧,MN∥DE,如图4,作NG⊥BA于点G,延长DM交BN于点H,∵MNED是平行四边形,∴∠MDE=MNE,∠ENH=∠DHB,∵BN∥DF,∴∠ADH=∠DHB=∠ENH,∴∠MNB=∠EDF,在△BMN和△FED中∴△BMN≌△FED(AAS),∴BM=EF=1,BN=DF=2,∴M(2,1),N(4,2);综上所述,四边形是平行四边形时,,;四边形是平行四边形时,,;四边形是平行四边形时,,.【点睛】本题考查了二次函数综合题,(1)利用了正方形的性质,余角的性质,全等三角形的判定与性质,待定系数法求函数解析式;(2)利用了相似三角形的性质,矩形的判定,分类讨论时解题关键;(3)利用了平行四边形的判定,分类讨论时解题关键.21、(1),;(2),【解析】(1),,△=16-4×3×(-1)=28,∴,∴,;(2),,,∴或,∴,22、树高为米.【分析】延长交BD延长线于点,根据同一时刻,物体与影长成正比可得,根据AB//CD可得△AEB∽△CED,可得,即可得出,可求出DE的长,由BE=BD+DE可求出BE的长,根据求出AB的长即可.【详解】延长和相交于点,则就是树影长的一部分,∵某一时刻测得高为的竹竿影长为,∴,∵AB//CD,∴△AEB∽△CED,∴,∴,∴,∴,∴,∴即树高为米.【点睛】本题考查相似三角形的应用,熟练掌握同一时刻,物体与影长成正比及相似三角形判定定理是解题关键.23、(1)证明见解析;(2)【分析】(1)根据圆周角定理、等腰三角形的三线合一的性质即可证得结论;(2)根据圆周角定理及等腰三角形的判定得到DE=BD=3,再根据勾股定理求出AB,即可得到半径的长.【详解】(1)∵AB是⊙O直径∴∠ADB=90°,在△ABC中,AB=AC,∴DB=DC,即点D是BC的中点;(2)∵AB=AC,∴∠B=∠C,又∠B=∠E,∴∠C=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论