版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若2sinA=,则锐角A的度数为()A.30° B.45° C.60° D.75°2.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.3.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠14.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A. B. C. D.5.对于二次函数,下列说法不正确的是()A.其图象的对称轴为过且平行于轴的直线.B.其最小值为1.C.其图象与轴没有交点.D.当时,随的增大而增大.6.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定7.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°8.向上发射一枚炮弹,经秒后的高度为,且时间与高度的关系式为,若此时炮弹在第秒与第秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第秒 B.第秒 C.第秒 D.第秒9.在平面直角坐标系中,二次函数()的图象如图所示,现给出以下结论:①;②;③;④(为实数)其中结论错误的有()A.1个 B.2个 C.3个 D.4个10.如图,点C在弧ACB上,若∠OAB=20°,则∠ACB的度数为()A. B. C. D.11.要得到函数y=2(x-1)2+3的图像,可以将函数y=2x2的图像()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度12.下列关于一元二次方程(,是不为的常数)的根的情况判断正确的是()A.方程有两个相等的实数根 B.方程有两个不相等的实数根C.方程没有实数根 D.方程有一个实数根二、填空题(每题4分,共24分)13.一元二次方程的根的判别式的值为____.14.抛物线y=(x+2)2+1的顶点坐标为_____.15.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是、,且,则队员身高比较整齐的球队是_____.16.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=__.17.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.18.方程x2﹣9x=0的根是_____.三、解答题(共78分)19.(8分)已知,关于的方程的两个实数根.(1)若时,求的值;(2)若等腰的一边长,另两边长为、,求的周长.20.(8分)如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,求∠C.21.(8分)如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒1个单位长度的速度沿边向终点运动,设运动的时间为秒,.(1)直接写出关于的函数解析式及的取值范围:_______;(2)当时,求的值;(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.22.(10分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)销售单价m(元/件)(1)请计算第几天该商品单价为25元/件?(2)求网店第几天销售额为792元?(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?23.(10分)如图,是的直径,弦于点,是上一点,,的延长线交于点.(1)求证:.(2)当平分,,,求弦的长.24.(10分)如图,已知双曲线与直线交于点和点(1)求双曲线的解析式;(2)直接写出不等式的解集25.(12分)已知关于x的一元二次方程有两个实数根x1,x1.(1)求实数k的取值范围;(1)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.26.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.
参考答案一、选择题(每题4分,共48分)1、B【解析】等式两边除以2,根据特殊的锐角三角比值可确定∠A的度数.【详解】∵2sinA=,sinA=,∠A=45°,故选B.【点睛】本题主要考查了特殊角的三角函数值,熟记特殊角的三角函数值是解答关键.2、C【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.【点睛】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.3、D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于的不等式组,求出不等式组的解集即可得到的取值范围.【详解】根据题意得:,且,解得:,且.故选:D.【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于的不等式组是解决问题的关键.4、C【分析】根据图中符号所处的位置关系作答.【详解】解:从立体图形可以看出这X,菱形和圆都是相邻的关系,故B,D错误,当x在上面,菱形在前面时,圆在右边,故A错误,C正确.故选C.【点睛】此题主要考查了展开图折叠成几何体,动手折叠一下,有助于空间想象力的培养.5、D【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A、B、D三项,再根据抛物线的顶点和开口即可判断C项,进而可得答案.【详解】解:,所以抛物线的对称轴是直线:x=3,顶点坐标是(3,1);A、其图象的对称轴为过且平行于轴的直线,说法正确,本选项不符合题意;B、其最小值为1,说法正确,本选项不符合题意;C、因为抛物线的顶点是(3,1),开口向上,所以其图象与轴没有交点,说法正确,本选项不符合题意;D、当时,随的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.6、B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.7、D【解析】解:∵B是弧AC的中点,∴∠AOB=2∠BDC=80°.又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.点睛:本题考查了圆周角定理,正确理解圆周角定理求得∠AOB的度数是关键.8、B【分析】二次函数是一个轴对称图形,到对称轴距离相等的两个点所表示的函数值也是一样的.【详解】根据题意可得:函数的对称轴为直线x=,即当x=10时函数达到最大值.故选B.【点睛】本题主要考查的是二次函数的对称性,属于中等难度题型.理解“如果两个点到对称轴距离相等,则所对应的函数值也相等”是解决这个问题的关键.9、B【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线可知:,,对称轴,∴,∴,故①错误;②由对称轴可知:,∴,,故②错误;③关于的对称点为,∴时,,故③正确;④当时,y的最小值为,∴时,,∴,故④正确故选:B.【点睛】本题考查了二次函数图象与系数的关系,结合图象得出系数之间的关系是解题的关键.10、C【分析】根据圆周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度数.【详解】解:∵∠ACB=∠AOB,
而∠AOB=180°-2×20°=140°,
∴∠ACB=×140°=70°.
故选:C.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.11、C【解析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.12、B【分析】首先用表示出根的判别式,结合非负数的性质即可作出判断.【详解】由题可知二次项系数为,一次项系数为,常数项为,,是不为的常数,,方程有两个不相等的实数根,故选:B.【点睛】本题主要考查了根的判别式的知识,解答此题要掌握一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根③△<0⇔方程没有实数根.二、填空题(每题4分,共24分)13、1.【解析】直接利用根的判别式△=b2-4ac求出答案.【详解】一元二次方程x2+3x=0根的判别式的值是:△=32-4×1×0=1.故答案为1.【点睛】此题主要考查了根的判别式,正确记忆公式是解题关键.14、(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y=(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.15、乙【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量16、1【分析】根据白球的概率公式列出方程求解即可.【详解】解:不透明的布袋中的球除颜色不同外,其余均相同,共有(n+4)个球,其中白球4个,根据概率公式知:P(白球)=,解得:n=1,故答案为:1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P.17、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.18、x1=0,x2=1【分析】观察本题形式,用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【详解】解:x2﹣1x=0即x(x﹣1)=0,解得x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.三、解答题(共78分)19、(1)30;(2)1【分析】(1)若k=3时,方程为x2-1x+6=0,方法一:先求出一元二次方程的两根a,b,再将a,b代入因式分解后的式子计算即可;方法二:利用根与系数的关系得到a+b=1,ab=6,再将因式分解,然后利用整体代入的方法计算;(2)分1为底边和1为腰两种情况讨论即可确定等腰三角形的周长.【详解】解:(1)将代入原方程,得:.方法一:解上述方程得:因式分解,得:.代入方程的解,得:.方法二:应用一元二次方程根与系数的关系因式分解,得:,由根与系数的关系,得,则有:.(2)①当与其中一个相等时,不妨设,将代回原方程,得.解得:,此时,不满足三角形三边关系,不成立;②当时,,解得:,解得:,.综上所述:△ABC的周长为1.【点睛】本题考查了根的判别式,根与系数的关系,三角形的三边关系,等腰三角形的定义,解题的关键是熟知两根之和、两根之积与系数的关系.20、∠C=57°.【分析】此题根据圆周角与圆心角的关系求解即可.【详解】连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°.【点睛】此题考查同圆中圆周角与圆心角的关系和切线相关知识,难度一般.21、(1);(2),;(3)经过点的双曲线的值不变.值为.【分析】(1)过点P作PE⊥BC于点E,依题意求得P、Q的坐标,进而求得PE、EQ的长,再利用勾股定理即可求得答案,由时间=距离速度可求得t的取值范围;(2)当,即时,代入(1)求得的函数中,解方程即可求得答案;(3)过点作于点,求得OB的长,由,可求得,继而求得OD的长,利用三角函数即可求得点D的坐标,利用反比例函数图象上点的特征即可求得值.【详解】(1)过点P作PE⊥BC于点E,如图1:∵点B、C纵坐标相同,∴BC⊥y轴,∴四边形OPEC为矩形,∵运动的时间为秒,∴,在中,,,,∴,即,点Q运动的时间最多为:(秒),点P运动的时间最多为:(秒),∴关于的函数解析式及的取值范围为:;(2)当时,整理,得,解得:,.(3)经过点的双曲线的值不变.连接,交于点,过点作于点,如下图2所示.∵,,∴.∵,∴,∴,∴.∵,∴.在中,,,∴,,∴点的坐标为,∴经过点的双曲线的值为.【点睛】本题考查了二次函数的应用-动态几何问题,解直角三角形的应用,相似三角形的判定与性质,构造正确的辅助线是解题的关键.22、(1)第10天时该商品的销售单价为25元/件;(2)网店第26天销售额为792元;(3);这30天中第15天获得的利润最大,最大利润是元.【分析】(1)将m=25代入m=20+x,求得x即可;(2)令,解得方程即可;(3)根据“总利润=单件利润×销售量”可得函数解析式,将所得函数解析式配方成顶点式后,根据二次函数的性质即可得.【详解】解:(1)当时,,解得:,所以第10天时该商品的销售单价为25元/件;(2)根据题意,列方程为:,解得(舍去)答:网店第26天销售额为792元.(3);(4),∴当时,y最大=,答:这30天中第15天获得的利润最大,最大利润是元【点睛】本题考查二次函数的应用等知识,解题的关键是学会构建函数,利用二次函数的性质解决问题,属于中考常考题型.23、(1)证明见解析;(2)2【分析】(1)根据垂径定理可得,即,再根据圆内接四边形的性质即可得证;(2)连接OG,BG,OD,根据等腰直角三角形的性质可得,利用垂径定理和解直角三角形可得,在中应用勾股定理即可求解.【详解】解:(1)弦,,,四边形是圆内接四边形,,;(2)连接OG,BG,OD,,∵,∴,∵,∴,∵,∴,在中,,,∴,∵平分,,∴,∵AB是直径,∴,∴,∴,∴,在中,,即,解得或(舍),∴.【点睛】本题考查垂径定理、圆内接四边形的性质、勾股定理、等腰直角三角形的性质、解直角三角形等内容,作出辅助线是解题的关键.24、(1);(2)或【分析】(1)将点A坐标代入双曲线解析式即可得出k的值,从而求出双曲线的解析式;(2)求出B点坐标,利用图象即可得解.【详解】解:(1)∵双曲线经过点,.∴双曲线的解析式为(2)由双曲线解析式可得出B(-4,-1),结合图象可得出,不等式的解集是:或.【点睛】本题考查的知识点是反比例函数与一次函数的交点问题,解题的关键是从图象中得出相关信息.25、(1)(1)不存在【分析】(1)由题意可得△≥0,即[﹣(1k+1)]1﹣4(k1+1k)≥0,通过解该不等式即可求得k的取值范围;(1)假设存在实数k使得x1·x1-x11-x11≥0成立.由根与系数的关系可得x1+x1=1k+1,x1·x1=k1+1k,然后利用完全平方公式可以把x1·x1-x11-x11≥0转化为3x1·x1-(x1+x1)1≥0的形式,通过解不等式可以求得k的值.【详解】(1)∵原方程有两个实数根,∴△≥0即[﹣(1k+1)]1﹣4(k1+1k)≥0,∴4k1+4k+1﹣4k1﹣8k≥0,∴1﹣4k≥0,∴k≤,∴当k≤时,原方程有两个实数根;(1)假设存在实数k使得x1·x1-x11-x11≥0成立,∵x1,x1是原方程的两根,∴x1+x1=1k+1,x1·x1=k1+1k,由x1·x1-x11-x11≥0,得3x1·x1-(x1+x1)1≥0∴3(k1+1k)﹣(1k+1)1≥0,整理得:﹣(k﹣1)1≥0,∴只有当k=1时,上式才能成立;又∵由(1)知k≤,∴不存在实数k使得x1·x1-x11-x11≥0成立.26、(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,最小值为;②.【解析】试题分析:(1)只要证到三个内角等于90°即可.(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44814-2024基于用户面的定位业务技术要求终端
- 二零二四年电子医疗服务合作协议
- 技术评审合同模板
- Unit3AfterschoolactivitiesLet'sSpell(课件)人教新起点版英语三年级下册
- 2024年度工厂产品质量保证与售后服务合同3篇
- 化工设计:第8章 化工管道设计
- 基于二零二四年度计划的白酒分销合同
- 生产厂家与代理的签订合同完整版
- 汽车抵押借款合同模板:2024年度特别版3篇
- 2024年度工程廉政协议书签订时间
- 大学生心理健康教育(第二版) 课件 第十四章 大学生心理危机
- 13.1 在劳动中创造人生价值 课件-2024-2025学年统编版道德与法治七年级上册
- 2023-2024学年沪科版数学八年级上册期中测试题附答案(共2套)
- 高三一轮复习+化学反应速率及其影响因素+课件
- 五年级上册解方程练习100题及答案
- 北京市东城区2023-2024学年高三上学期期末统一测试英语试卷 含解析
- 2024年中科院心理咨询师官方备考试题库-上(单选题)
- 【S村剩余劳动力转移的情况调查报告4000字(论文)】
- 《“119”的警示》教学设计+学习任务单道德与法治2024-2025学年三年级上册统编版
- 2024年海南省中考数学试题卷(含答案解析)
- 油气开发地质学智慧树知到答案2024年中国地质大学(武汉)
评论
0/150
提交评论