版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知,是关于的一元二次方程的两个不相等的实数根,且满足,则的值是()A.3 B.1 C.3或 D.或12.若+10x+m=0是关于x的一元二次方程,则m的值应为()A.m="2" B.m= C.m= D.无法确定3.由二次函数可知()A.其图象的开口向下 B.其图象的对称轴为直线C.其顶点坐标为 D.当时,随的增大而增大4.如图,点,,均在坐标轴上,,过,,作,是上任意一点,连结,,则的最大值是()A.4 B.5 C.6 D.5.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)6.若一次函数的图象不经过第二象限,则关于的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定7.已知m是方程的一个根,则代数式的值等于()A.2005 B.2006 C.2007 D.20088.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为()A.20° B.25° C.30° D.50°9.二次函数的图象如图所示,下列结论:;;;;,其中正确结论的是A. B. C. D.10.如图,水杯的杯口与投影面平行,投影线的几方向如箭头所示,它的正投影是()A. B. C. D.11.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大12.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣(t﹣4)2+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3s B.4s C.5s D.6s二、填空题(每题4分,共24分)13.若△ABC∽△A′B′C′,且,△ABC的周长为12cm,则△A′B′C′的周长为_____________.14.如图,在平面直角坐标系中,和是以坐标原点为位似中心的位似图形,且点B(3,1),,(6,2),若点(5,6),则点的坐标为________.15.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为____________.16.如图,矩形中,,连接,将线段分别绕点顺时针旋转90°至,线段与弧交于点,连接,则图中阴影部分面积为____.17.某种植基地2016年蔬菜产量为100吨,2018年蔬菜实际产量为121吨,则蔬菜产量的年平均增长率为____.18.如图,在边长为2的菱形ABCD中,,点E、F分别在边AB、BC上.将BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________.三、解答题(共78分)19.(8分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次为分,分,分,分.马老师将九年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在分及其以上的人数是_______人;(2)补全下表中、、的值:平均数(分)中位数(分)众数(分)方差一班二班(3)学校准备在这两个班中选一个班参加市级科学素养竞赛,你建议学校选哪个班参加?说说你的理由.20.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?21.(8分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.22.(10分)如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.(1)根据图象,直接写出满足的的取值范围;(2)求这两个函数的表达式;(3)点在线段上,且,求点的坐标.23.(10分)孝感商场计划在春节前50天里销售某品牌麻糖,其进价为18元/盒.设第天的销售价格为(元/盒),销售量为(盒).该商场根据以往的销售经验得出以下的销售规律:①当时,;当时,与满足一次函数关系,且当时,;时,.②与的关系为.(1)当时,与的关系式为;(2)为多少时,当天的销售利润(元)最大?最大利润为多少?24.(10分)解下列方程:(1);(2)25.(12分)网络销售是一种重要的销售方式.某农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量与销售单价(元)满足如图所示的函数关系(其中).(1)若,求与之间的函数关系式;(2)销售单价为多少元时,每天的销售利润最大?最大利润是多少元?26.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若的长为,则图中阴影部分的面积为_____.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据一元二次方程根与系数的关系,计算出、再代入分式计算,即可求得.【详解】解:由根与系数的关系得:,,∴即,解得:或,而当时,原方程△,无实数根,不符合题意,应舍去,∴的值为1.故选A.【点睛】本题考查一元二次方程中根与系数的关系应用,难度不大,求得结果后需进行检验是顺利解题的关键.2、C【解析】试题分析:根据一元二次方程的定义进行解得2m﹣1=2,解得m=.故选C.考点:一元二次方程的定义3、B【分析】根据二次函数的图像与性质即可得出答案.【详解】A:a=3,所以开口向上,故A错误;B:对称轴=4,故B正确;C:顶点坐标为(4,-2),故C错误;D:当x<4时,y随x的增大而减小,故D错误;故答案选择D.【点睛】本题考查的是二次函数,比较简单,需要熟练掌握二次函数的图像与性质.4、C【分析】连接,,如图,利用圆周角定理可判定点在上,易得,,,,,设,则,由于表示点到原点的距离,则当为直径时,点到原点的距离最大,由于为平分,则,利用点在圆上得到,则可计算出,从而得到的最大值.【详解】解:连接,,如图,,为的直径,点在上,,,,,,,设,,而表示点到原点的距离,当为直径时,点到原点的距离最大,为平分,,,,即,此时,即的最大值是1.故选:.【点睛】本题考查了点与圆的位置关系、圆周角定理、勾股定理等,作出辅助线,得到是解题的关键.5、A【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.6、A【分析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.【详解】解:一次函数的图象不经过第二象限,,,,方程有两个不相等的实数根.故选.【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.7、D【分析】由m是方程x2-2006x+1=0的一个根,将x=m代入方程,得到关于m的等式,变形后代入所求式子中计算,即可求出值.【详解】解:∵m是方程x2-2006x+1=0的一个根,∴m2-2006m+1=0,即m2+1=2006m,m2=2006m−1,则=====2006+2=2008故选:D.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8、B【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到,然后根据圆周角定理计算∠ADC的度数.【详解】∵的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴,∴∠ADC=∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.9、C【分析】利用图象信息以及二次函数的性质一一判断即可;【详解】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴(a﹣b+c)(a+b+c)<0∴,∴,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)≤a﹣b,故⑤正确.故选C.【点睛】本题考查二次函数的图象与系数的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.10、D【解析】水杯的杯口与投影面平行,即与光线垂直,则它的正投影图有圆形.【详解】解:依题意,光线是垂直照下的,它的正投影图有圆形,只有D符合,故选:D.【点睛】本题考查正投影的定义及正投影形状的确定.11、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为==188,方差为S2==;换人后6名队员身高的平均数为==187,方差为S2==∵188>187,>,∴平均数变小,方差变小,故选A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12、B【分析】根据顶点式就可以直接求出结论;【详解】解:∵﹣1<0,∴当t=4s时,函数有最大值.即礼炮从升空到引爆需要的时间为4s,故选:B.【点睛】本题主要考查了二次函数的应用,掌握二次函数的应用是解题的关键.二、填空题(每题4分,共24分)13、16cm【分析】根据相似三角形周长的比等于相似比求解.【详解】解:∵△ABC∽△A′B′C′,且,即相似三角形的相似比为,
∵△ABC的周长为12cm
∴△A′B′C′的周长为12÷=16cm.故答案为:16.【点睛】此题考查相似三角形的性质,解题关键在于掌握相似三角形周长的比等于相似比.14、(2.5,3)【分析】利用点B(3,1),B′(6,2)即可得出位似比进而得出A的坐标.【详解】解:∵点B(3,1),B′(6,2),点A′(5,6),∴A的坐标为:(2.5,3).故答案为:(2.5,3).【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.15、【分析】利用概率公式直接写出答案即可.【详解】∵共“微信”、“支付宝”、“银行卡”三种支付方式,∴选择“微信”支付方式的概率为,故答案为:.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、【分析】根据勾股定理得到、由三角函数的定义得到、根据旋转的性质得到、求得,然后根据图形的面积公式即可得到结论.【详解】解:∵四边形是矩形∴∵,∴,∴∵线段分别绕点顺时针旋转至∴∴∴.故答案是:【点睛】本题考查了矩形的性质、勾股定理、锐角三角函数、直角三角形的面积、扇形的面积、将求不规则图形面积问题转化为求规则图形面积相加减问题,解题的关键在于面积问题的转化.17、10%【分析】2016年到2018年是2年的时间,设年增长率为x,可列式100×=121,解出x即可.【详解】设平均年增长率为x,可列方程100×=121解得x=10%故本题答案应填10%.【点睛】本题考查了一元二次函数的应用问题.18、【分析】如图,作GH⊥BA交BA的延长线于H,EF交BG于O.利用勾股定理求出MG,由此即可解决问题.【详解】过点G作GM⊥AB交BA延长线于点M,则∠AMG=90°,∵G为AD的中点,∴AG=AD==1,∵四边形ABCD是菱形,∴AB//CD,∴∠MAG=∠D=60°,∴∠AGM=30°,∴AM=AG=,∴MG=,设BE=x,则AE=2-x,∵EG=BE,∴EG=x,在Rt△EGM中,EG2=EM2+MG2,∴x2=(2-x+)2+,∴x=,故答案为.【点睛】本题考查了菱形的性质、轴对称的性质等,正确添加辅助线构造直角三角形利用勾股定理进行解答是关键.三、解答题(共78分)19、(1);(2);;;(3)见解析.【分析】(1)根据条形统计图得到参赛人数,然后根据扇形统计图求得C级的百分率,即可求出成绩在80分及以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求得平均数、中位数、众数;(3)根据数据波动大小来选择.【详解】(1)由条形统计图知,参加竞赛的人数为:(人),此次竞赛中二班成绩在分的百分率为:,∴此次竞赛中二班成绩在分及其以上的人数是:(人),故答案为:;(2)二班成绩分别为:100分的有(人),90分的有(人),80分的有(人),70分的有(人),(分),∵一班成绩的中位数在第位上,∴一班成绩的中位数是:(分),∵二班成绩中100分的人数最多达到11个,∴二班成绩的众数为:故答案为:,,(3)选一班参加市级科学素养竞赛,因为一班方差较小,比较稳定.【点睛】本题考查了平均数、中位数、众数、方差的意义以及各种统计图之间的相互转化的知识,在关键是根据题目提供的信息得到相应的解决下一题的信息,考查了学生们加工信息的能力.20、(1)(2),,144元【分析】(1)利用待定系数法求解可得关于的函数解析式;(2)根据“总利润每件的利润销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【详解】(1)设与的函数解析式为,将、代入,得:,解得:,所以与的函数解析式为;(2)根据题意知,,,当时,随的增大而增大,,当时,取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.21、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),当x=3时,S有最大值;(3)(0,﹣)【分析】(1)设出解析式,由待定系数法可得出结论;(2)点E在抛物线上,用x去表示y,结合三角形面积公式即可得出三角形OEB的面积S与x之间的函数关系式,再由E点在x轴下方,得出1<x<1,将三角形OEB的面积S与x之间的函数关系式配方,即可得出最值;(3)找出D点关于y轴对称的对称点D′,结合三角形内两边之和大于第三边,即可确定当MD+MB最小时M点的坐标.【详解】解:(1)设抛物线解析式为y=ax2+bx+c,则,解得:.故抛物线解析式为y=x2﹣4x+.(2)过点E作EF⊥x轴,垂足为点F,如图1所示.E点坐标为(x,x2﹣4x+),F点的坐标为(x,0),∴EF=0﹣(x2﹣4x+)=﹣x2+4x﹣.∵点E(x,y)是抛物线上一动点,且在x轴下方,∴1<x<1.三角形OEB的面积S=OB•EF=×1×(﹣x2+4x﹣)=﹣(x﹣3)2+(1<x<1=.当x=3时,S有最大值.(3)作点D关于y轴的对称点D′,连接BD′,如图2所示.∵抛物线解析式为y=x2﹣4x+=(x﹣3)2﹣,∴D点的坐标为(3,﹣),∴D′点的坐标为(﹣3,﹣).由对称的特性可知,MD=MD′,∴MB+MD=MB+MD′,当B、M、D′三点共线时,MB+MD′最小.设直线BD′的解析式为y=kx+b,则,解得:,∴直线BD′的解析式为y=x﹣.当x=0时,y=﹣,∴点M的坐标为(0,﹣).【点睛】本题考查了待定系数法求二次函数和一次函数解析式、轴对称的性质、利用二次函数求最值等知识.解题的关键是:(1)能够熟练运用待定系数法求解析式;(2)利用三角形面积公式找出三角形面积的解析式,再去配方求最值;(3)利用轴对称的性质确定M点的位置.22、(1)或;(2),;(3)【分析】(1)观察图象得到当或时,直线y=k1x+b都在反比例函数的图象上方,由此即可得;(2)先把A(-1,4)代入y=可求得k2,再把B(4,n)代入y=可得n=-1,即B点坐标为(4,-1),然后把点A、B的坐标分别代入y=k1x+b得到关于k1、b的方程组,解方程组即可求得答案;(3)设与轴交于点,先求出点C坐标,继而求出,根据分别求出,,再根据确定出点在第一象限,求出,继而求出P点的横坐标,由点P在直线上继而可求出点P的纵坐标,即可求得答案.【详解】(1)观察图象可知当或,k1x+b>;(2)把代入,得,∴,∵点在上,∴,∴,把,代入得,解得,∴;(3)设与轴交于点,∵点在直线上,∴,,又,∴,,又,∴点在第一象限,∴,又,∴,解得,把代入,得,∴.【点睛】本题考查了一次函数与反比例函数的综合题,涉及了待定系数法,函数与不等式,三角形的面积等,熟练掌握相关知识是解题的关键.注意数形结合思想的应用.23、(1);(2)32,2646元.【分析】(1)设一次函数关系式为,将“当时,;时,”代入计算即可;(2)根据利润等于单件利润乘以销售量分段列出函数关系式,再根据一次函数及二次函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026广东东莞银行南沙分行招聘10人笔试模拟试题及答案解析
- 2026浙江舟山双屿水务有限公司招聘11人员笔试模拟试题及答案解析
- 2026广东贵州中心放疗科陈明教授课题组自聘技术员招聘1人笔试备考试题及答案解析
- 2026地勘中心(中国非矿)成员单位招聘129人(一)笔试模拟试题及答案解析
- 2026年负债管理培训课件
- 2026民族团结杂志社面向社会公开招聘3人笔试备考试题及答案解析
- 2026年福建泉州晋江兆瑞建设有限公司公开招聘2名工作人员笔试备考试题及答案解析
- 2026上海中医药大学附属岳阳中西医结合医院招聘129人(第一批)笔试备考试题及答案解析
- 2026年上半年陕西省事业单位公开招聘笔试参考题库及答案解析
- 2026浙江黔东南州台江县面向社会补充招录3名政府专职消防员笔试备考试题及答案解析
- 车载光通信技术发展及无源网络应用前景
- 工程伦理-形考任务四(权重20%)-国开(SX)-参考资料
- 初中书香阅读社团教案
- 酒店年终总结汇报
- 《无人机地面站与任务规划》 课件 第1-5章 概论 -无人机航测任务规划与实施
- 绿色前缀5000亩生态农业示范园区建设规模及运营模式可行性研究报告
- DB42∕T 2078-2023 红火蚁监测与防控技术规程
- 2025-2030中医养生培训行业市场格局及增长趋势与投资价值分析报告
- 污水处理厂管网调度与优化方案
- 新能源汽车租赁服务在公务用车市场的应用与前景报告
- 《经济博弈论》课后答案补充习题答案
评论
0/150
提交评论