版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则A. B.C. D.2.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是()A. B. C. D.3.已知全集,则集合的子集个数为()A. B. C. D.4.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列函数中,值域为R且为奇函数的是()A. B. C. D.6.已知,,,则,,的大小关系为()A. B. C. D.7.已知为虚数单位,复数,则其共轭复数()A. B. C. D.8.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.9.如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为()A. B. C. D.10.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度11.已知,若则实数的取值范围是()A. B. C. D.12.函数的部分图像大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.14.已知满足且目标函数的最大值为7,最小值为1,则___________.15.假设10公里长跑,甲跑出优秀的概率为,乙跑出优秀的概率为,丙跑出优秀的概率为,则甲、乙、丙三人同时参加10公里长跑,刚好有2人跑出优秀的概率为________.16.若,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.(1)求数列{an}的通项an;(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.18.(12分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.19.(12分)如图,在四棱锥中,,,.(1)证明:平面;(2)若,,为线段上一点,且,求直线与平面所成角的正弦值.20.(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,…).记数表中位于第i行第j列的元素为,其中(,,).如:,.(1)设,,请计算,,;(2)设,,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,,对于整数t,t不属于数表M,求t的最大值.21.(12分)已知是圆:的直径,动圆过,两点,且与直线相切.(1)若直线的方程为,求的方程;(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.22.(10分)已知函数f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范围;(Ⅱ)若a<0,对∀x,y∈-∞,a,都有不等式f(x)≤(y+2020)+
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
因为,,所以,,故选D.2、C【答案解析】
直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值.【题目详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,∴,点B的横坐标为,∴点B的坐标为,把代入直线,解得,故选:C.【答案点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.3、C【答案解析】
先求B.再求,求得则子集个数可求【题目详解】由题=,则集合,故其子集个数为故选C【答案点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题4、A【答案解析】
计算,得到答案.【题目详解】根据题意,故,表示的复数在第一象限.故选:.【答案点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.5、C【答案解析】
依次判断函数的值域和奇偶性得到答案.【题目详解】A.,值域为,非奇非偶函数,排除;B.,值域为,奇函数,排除;C.,值域为,奇函数,满足;D.,值域为,非奇非偶函数,排除;故选:.【答案点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.6、D【答案解析】
构造函数,利用导数求得的单调区间,由此判断出的大小关系.【题目详解】依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【答案点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.7、B【答案解析】
先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【题目详解】由,所以其共轭复数.故选:B.【答案点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.8、C【答案解析】
由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【题目详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【答案点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.9、A【答案解析】
分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。10、A【答案解析】
由的最小正周期是,得,即,因此它的图象向左平移个单位可得到的图象.故选A.考点:函数的图象与性质.【名师点睛】三角函数图象变换方法:11、C【答案解析】
根据,得到有解,则,得,,得到,再根据,有,即,可化为,根据,则的解集包含求解,【题目详解】因为,所以有解,即有解,所以,得,,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C【答案点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,12、A【答案解析】
根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【题目详解】解:因为,所以的定义域为,则,∴为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.【答案点睛】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.二、填空题:本题共4小题,每小题5分,共20分。13、(1),;(2),.【答案解析】
(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【题目详解】(1)直线的普通方程为.在曲线的参数方程中,,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,,所以点到直线的距离的最小值为.此时点的坐标为.【答案点睛】本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.14、-2【答案解析】
先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时所在的顶点即可.【题目详解】由题意得:目标函数在点B取得最大值为7,在点A处取得最小值为1,∴,,∴直线AB的方程是:,∴则,故答案为.【答案点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值的方法,属于基础题.15、【答案解析】
分跑出优秀的人为:甲、乙和甲、丙和乙、丙三种情况分别计算再求和即可.【题目详解】刚好有2人跑出优秀有三种情况:其一是只有甲、乙两人跑出优秀的概率为;其二是只有甲、丙两人跑出优秀的概率为;其三是只有乙、丙两人跑出优秀的概率为,三种情况相加得.即刚好有2人跑出优秀的概率为.故答案为:【答案点睛】本题主要考查了分类方法求解事件概率的问题,属于基础题.16、【答案解析】
因为,所以.因为,所以,又,所以,所以..三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)【答案解析】
(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列出关于d的方程,解出d的值,即可得到数列{an}的通项an;(2)先根据第(1)题的结果计算出数列{bn}的通项公式,然后运用错位相减法计算前n项和Tn.【题目详解】(1)由题意,设等差数列{an}的公差为d(d>0),则a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an⋅3n•3n=(2n+1)•3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)•3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)•3n﹣1+(2n+1)•3n,两式相减,可得:﹣2Tn=3×1+2×31+2×32+…+2•3n﹣1﹣(2n+1)•3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)•3n=3+2(2n+1)•3n=﹣2n•3n,∴Tn=n•3n.【答案点睛】本题主要考查等差数列基本量的计算,以及运用错位相减法计算前n项和.考查了转化与化归思想,方程思想,错位相减法的运用,以及逻辑思维能力和数学运算能力.属于中档题.18、(1)极大值是,无极小值;(2)【答案解析】
(1)当时,可求得,令,利用导数可判断的单调性并得其零点,从而可得原函数的极值点及极大值;(2)表示出,并求得,由题意,得方程有两个不同的实根,,从而可得△及,由,得.则可化为对任意的恒成立,按照、、三种情况分类讨论,分离参数后转化为求函数的最值可解决;【题目详解】(1)当时,.令,则,显然在上单调递减,又因为,故时,总有,所以在上单调递减.由于,所以当时,;当时,.当变化时,的变化情况如下表:+-增极大减所以在上的极大值是,无极小值.(2)由于,则.由题意,方程有两个不等实根,则,解得,且,又,所以.由,,可得又.将其代入上式得:.整理得,即当时,不等式恒成立,即.当时,恒成立,即,令,易证是上的减函数.因此,当时,,故.当时,恒成立,即,因此,当时,所以.综上所述,.【答案点睛】本题考查利用导数求函数的最值、研究函数的极值等知识,考查分类讨论思想、转化思想,考查学生综合运用知识分析问题解决问题的能力,该题综合性强,难度大,对能力要求较高.19、(1)证明见解析(2)【答案解析】
(1)利用线段长度得到与间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以、、为轴、轴、轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【题目详解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又为坐标原点,分别以、、为轴、轴、轴建立空间直角坐标系,则,,,,,,,∵,∴,设是平面的一个法向量则,即,取得∴∴直线与平面所成的正弦值为【答案点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值.20、(1)(2)详见解析(3)29【答案解析】
(1)将,代入,可求出,,可代入求,,可求结果.(2)可求,,通过反证法证明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【题目详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,,得,故.(2)证明:已知.,由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,,.得,,,.所以若,则存在,,使,若,则存在,,,使,因此,对于正整数,考虑集合,,,即,,,,,,.下面证明:集合中至少有一元素是7的倍数.反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,,其中,,.则这两个元素的差为7的倍数,即,所以,与矛盾,所以假设不成立,即原命题成立.即集合中至少有一元素是7的倍数,不妨设该元素为,,,则存在,使,,,即,,,由已证可知,若,则存在,,使,而,所以为负整数,设,则,且,,,,所以,当,时,对于整数,若,则成立.(3)下面用反证法证明:若对于整数,,则,假设命题不成立,即,且.则对于整数,存在,,,,,使成立,整理,得,又因为,,所以且是7的倍数,因为,,所以,所以矛盾,即假设不成立.所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的最大值,又因为,,,,所以.【答案点睛】本题考查数列的综合应用,以及反证法,求最值,属于难题.21、(1)或.(2)存在,;【答案解析】
(1)根据动圆过,两点,可得圆心在的垂直平分线上,由直线的方程为,可知在直线上;设,由动圆与直线相切可得动圆的半径为;又由,及垂径定理即可确定的值,进而确定圆的方程.(2)方法一:设,可得圆的半径为,根据,可得方程为并化简可得的轨迹方程为.设,,可得的中点,进而由两点间距离公式表示出半径,表示出到轴的距离,代入化简即可求得的值,进而确定所过定点的坐标;方法二:同上可得的轨迹方程为,由抛物线定义可求得,表示出线段的中点的坐标,根据到轴的距离可得等量关系,进而确定所过定点的坐标.【题目详解】(1)因为过点,,所以圆心在的垂直平分线上.由已知的方程为,且,关于于坐标原点对称,所以在直线上,故可设.因为与直线相切,所以的半径为.由已知得,,又,故可得,解得或.故的半径或,所以的方程为或.(2)法一:设,由已知得的半径为,.由于,故可得,化简得的轨迹方程为.设,,则得,的中点,则以为直径的圆的半径为:,到轴的距离为,令,①化简得,即,故当时,①式恒成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 豪阁木业家具购销合同
- 石材晶面处理劳务合同
- 外墙外保温工程施工清包工合同
- 电影承制合同范本
- 避雷接地施工合同范例3篇
- 钢网架施工合同格式
- 砖厂承包合同签订注意事项讲解
- 学校工作计划
- 闭门器配件行业市场发展及发展趋势与投资战略研究报告
- 四年级的科学教学工作计划
- 浙江财经大学《政治经济学》2021-2022学年第一学期期末试卷
- 化工行业生产流程智能化改造方案
- 2024年度太阳能光伏设备购销合同3篇
- 一次性使用医疗用品管理制度
- 客服人员仪容仪表培训
- 第三方汽车物流运输合同(3篇)
- JJF(京) 3012-2021 触针式电动轮廓仪校准规范
- 抗体药物研发
- 2024年冀教版小学六年级上学期期末英语试卷及解答参考
- 辽宁省大连市2023-2024学年高三上学期双基测试(期末考试) 地理 含答案
- 2024年江苏省无锡惠山经济开发区招聘14人历年高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论