2022年湖北省恩施州恩施市数学九年级上册期末考试试题含解析_第1页
2022年湖北省恩施州恩施市数学九年级上册期末考试试题含解析_第2页
2022年湖北省恩施州恩施市数学九年级上册期末考试试题含解析_第3页
2022年湖北省恩施州恩施市数学九年级上册期末考试试题含解析_第4页
2022年湖北省恩施州恩施市数学九年级上册期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,AB是⊙O直径,若∠AOC=100°,则∠D的度数是()A.50° B.40° C.30° D.45°2.下列说法正确的是()A.三角形的外心一定在三角形的外部 B.三角形的内心到三个顶点的距离相等C.外心和内心重合的三角形一定是等边三角形 D.直角三角形内心到两锐角顶点连线的夹角为125°3.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个4.的值等于()A. B. C. D.5.将抛物线向右平移1个单位,再向上平移3个单位,得到的抛物线是()A. B.C. D.6.如图,已知为的直径,点,在上,若,则()A. B. C. D.7.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇8.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45° B.60° C.90° D.135°9.在平面直角坐标系中,点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(,A,C,B三点共线),把一面镜子水平放置在平台上的点G处,测得,然后沿直线后退到点E处,这时在镜子里恰好看到凉亭的顶端A,测得.若小明身高1.6m,则凉亭的高度AB约为()A.2.5m B.9m C.9.5m D.10m11.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别1234567分值90959088909285这组数据的中位数和众数分别是A.88,90 B.90,90 C.88,95 D.90,9512.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为()A.2πcm B.4πcm C.6πcm D.8πcm二、填空题(每题4分,共24分)13.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.14.一种药品原价每盒25元,两次降价后每盒16元.设两次降价的百分率都为x,可列方程________.15.若=2,则=_____.16.若一个反比例函数的图像经过点和,则这个反比例函数的表达式为__________.17.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;18.一组数据:2,5,3,1,6,则这组数据的中位数是________.三、解答题(共78分)19.(8分)如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.(1)求证:AB2=AE·AD;(2)若AE=2,ED=4,求图中阴影的面积.20.(8分)在一个三角形中,如果有一边上的中线等于这条边的一半,那么就称这个三角形为“智慧三角形”.(1)如图1,已知、是⊙上两点,请在圆上画出满足条件的点,使为“智慧三角形”,并说明理由;(2)如图2,是等边三角形,,以点为圆心,的半径为1画圆,为边上的一动点,过点作的一条切线,切点为,求的最小值;(3)如图3,在平面直角坐标系中,⊙的半径为1,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,求出此时点的坐标.21.(8分)如图,是的弦,于,交于,若,求的半径.22.(10分)如图,是□ABCD的边延长线上一点,连接,交于点.求证:△∽△CDF.23.(10分)在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?在的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.24.(10分)已知(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.25.(12分)计算题:(1)计算:sin45°+cos230°•tan60°﹣tan45°;(2)已知是锐角,,求.26.如图,海中有两个小岛,,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距.(1)求的值;(2)求小岛,之间的距离(计算过程中的数据不取近似值).

参考答案一、选择题(每题4分,共48分)1、B【分析】根据∠AOB=180°,∠AOC=100°,可得出∠BOC的度数,最后根据圆周角∠BDC与圆心角∠BOC所对的弧都是弧BC,即可求出∠BDC的度数.【详解】解:∵AB是⊙O直径,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所对的圆周角是∠BDC,圆心角是∠BOC,∴;故答案选B.【点睛】本题考查同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半,在做题时遇到已知圆心角,求圆周角的度数,可以通过计算,得出相应的圆心角的度数,即可得出圆周角的度数.2、C【分析】分别利用三角形内心以及三角形外心的性质判断得出即可.【详解】A.因为只有钝角三角形的外心才在三角形的外部,锐角三角形的外心在三角形内部,直角三角形的外心在斜边上,该选项错误;B.三角形的内心到三角形的三边距离相等,该选项错误;C.若三角形的外心与内心重合,则这个三角形一定是等边三角形,该选项正确;D.如图,∠C=90,∠BAC+∠ABC分别是角∠BAC、∠ABC的平分线,∴∠OAB+∠OBA,∴∠AOB,该选项错误.故选:C【点睛】本题考查三角形的外接圆和外心及三角形的内切圆与内心,正确把握它们的区别是解题的关键.3、B【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系4、A【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=.故选A.【点睛】本题考查了特殊角的三角函数值.5、D【分析】由题意可知原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【详解】解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴得到的抛物线解析式为y=2(x-1)2+3,故选:D.【点睛】本题考查二次函数的几何变换,熟练掌握二次函数的平移不改变二次项的系数得出新抛物线的顶点是解决本题的关键.6、C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.7、D【分析】根据事件发生的可能性大小判断.【详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、C【分析】根据圆内接四边形对角互补,结合已知条件可得∠A:∠B:∠C:∠D=1:2:3:2,∠B+∠D=180°,由此即可求得∠D的度数.【详解】∵四边形ABCD为圆的内接四边形,∠A:∠B:∠C=1:2:3,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选C.【点睛】本题考查了圆内接四边形的性质,熟练运用圆内接四边形对角互补的性质是解决问题的关键.9、D【分析】根据各象限内点的坐标特征进行判断即可得.【详解】因则点位于第四象限故选:D.【点睛】本题考查了平面直角坐标系象限的性质,象限的符号规律:第一象限、第二象限、第三象限、第四象限,熟记象限的性质是解题关键.10、A【分析】根据光线反射角等于入射角可得,根据可证明,根据相似三角形的性质可求出AC的长,进而求出AB的长即可.【详解】∵光线反射角等于入射角,∴,∵,∴,∴,∴,∴,∴.故选A.【点睛】本题考查相似三角形的应用,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;熟练掌握相似三角形的判定定理是解题关键.熟练掌握相似三角形的判定定理是解题关键.11、B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,1,1,1,92,95,∴中位数是按从小到大排列后第4个数为:1.众数是在一组数据中,出现次数最多的数据,这组数据中1出现三次,出现的次数最多,故这组数据的众数为1.故选B.12、B【解析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,

∵大圆的一条弦AB与小圆相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的长==4π,

故选B.【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.二、填空题(每题4分,共24分)13、【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.14、25(1-x)²=16【解析】试题分析:对于增长率和降低率问题的一般公式为:增长前数量×=增长后的数量,降低前数量×=降低后的数量,故本题的答案为:15、1【分析】根据=1,得出x=1y,再代入要求的式子进行计算即可.【详解】∵=1,∴x=1y,∴;故答案为:1.【点睛】本题主要考查了比例的基本性质.解答此题的关键是根据比例的基本性质求得x=1y.16、【分析】这个反比例函数的表达式为,将A、B两点坐标代入,列出方程即可求出k的值,从而求出反比例函数的表达式.【详解】解:设这个反比例函数的表达式为将点和代入,得化简,得解得:(反比例函数与坐标轴无交点,故舍去)解得:∴这个反比例函数的表达式为故答案为:.【点睛】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.17、3或9或或【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴,即,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案为:3或9或或.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.18、3【解析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.三、解答题(共78分)19、(1)见解析;(2)2π-3.【解析】(1)点A是劣弧BC的中点,即可得∠ABC=∠ADB,又由∠BAD=∠EAB,即可证得△ABE∽△ADB,根据相似三角形的对应边成比例,即可证得AB2=AE•AD.(2)连结OA,由S阴影=S扇形AOB-S△AOB求出即可.【详解】(1)证明:∵点A是劣弧BC的中点,∴=∴∠ABC=∠ADB.又∵∠BAD=∠EAB,∴△ABE∽△ADB.∴.∴AB2=AE•AD.(2)解:连结OA∵AE=2,ED=4,由(1)可知∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=1.∴AB=(舍负).∵BD为⊙O的直径,∴∠BAD=90°.在Rt△ABD中,BD=∴OB=.∴OA=OB=AB=∴△AOB为等边三角形∴∠AOB=60°.S阴影=S扇形AOB-S△AOB=【点睛】本题考查的知识点是相似三角形的判定与性质,圆周角定理,切线的性质,解直角三角形,解题的关键是熟练的掌握相似三角形的判定与性质,圆周角定理,切线的性质,解直角三角形.20、(1)见解析;(2);(1)或【分析】(1)连接AO并且延长交圆于,连接AO并且延长交圆于,即可求解;

(2)根据MN为⊙的切线,应用勾股定理得,所以OM最小时,MN最小;根据垂线段最短,得到当M和BC中点重合时,OM最小为,此时根据勾股定理求解DE,DE和MN重合,即为所求;

(1)根据“智慧三角形”的定义可得为直角三角形,根据题意可得一条直角边为1,当写斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为1,根据勾股定理可求得另一条直角边,再根据三角形面积可求得斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【详解】(1)如图1,点和均为所求理由:连接、并延长,分别交于点、,连接、,∵是的直径,∴,∴是“智慧三角形”同理可得,也是“智慧三角形”(2)∵是的切线,∴,∴,∴当最小时,最小,即当时,取得最小值,如图2,作于点,过点作的一条切线,切点为,连接,∵是等边三角形,,∴,,∴,∵是的一条切线,∴,,∴,当点与重合时,与重合,此时.(1)由“智慧三角形”的定义可得为直角三角形,根据题意,得一条直角边.∴当最小时,的面积最小,即最小时.如图1,由垂线段最短,可得的最小值为1.∴.过作轴,∵,∴.在中,,故符合要求的点坐标为或.【点睛】本题考查了圆与勾股定理的综合应用,掌握圆的相关知识,熟练应用勾股定理,明确“智慧三角形”的定义是解题的关键.21、5.【分析】连接OB,由垂径定理得BE=CE=4,在中,根据勾股定理列方程求解.【详解】解:连接设的半径为,则在中,由勾股定理得,即解得的半径为【点睛】本题考查了圆的垂径定理,利用勾股定理列方程求解是解答此题的关键.22、详见解析【分析】利用平行四边形的性质即可证明.【详解】证明:∵四边形ABCD是平行四边形,∴∠∠,∥,∴∠∠.∴△∽△【点睛】本题主要考查相似三角形的判定,掌握平行四边形的性质是解题的关键.23、(1)袋中有黄球有2个(2)【解析】设袋中黄球有x个,根据任意摸出一个球是红球的概率为列出关于x的方程,解之可得;

列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】设袋中黄球有x个,根据题意,得:,解得,经检验是原分式方程的解,,即袋中有黄球有2个;列表如下:红红红红黄黄红红,红红,红红,红红,红红,黄红,黄红红,红红,红红,红红,红红,黄红,黄红红,红红,红红,红红,红红,黄红,黄红红,红红,红红,红红,红红,黄红,黄黄

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论