




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知两圆半径分别为6.5cm和3cm,圆心距为3.5cm,则两圆的位置关系是()A.相交 B.外切 C.内切 D.内含2.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为()A. B. C. D.3.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为()A.4 B.2 C.﹣2 D.14.二次函数图象如图,下列结论正确的是()A. B.若且,则C. D.当时,5.坡比常用来反映斜坡的倾斜程度.如图所示,斜坡AB坡比为().A.:4 B.:1 C.1:3 D.3:16.抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=27.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润和月份之间的函数关系式为,则该企业一年中应停产的月份是()A.1月、2月、3月 B.2月、3月、4月 C.1月、2月、12月 D.1月、11月、12月8.已知正多边形的一个外角为36°,则该正多边形的边数为().A.12 B.10 C.8 D.69.如图,在Rt△ABC中,CD是斜边AB上的中线,已知AC=3,CD=2,则cosA的值为()A. B. C. D.10.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.1.71s B.1.71s C.1.63s D.1.36s二、填空题(每小题3分,共24分)11.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_____________.12.如果是从四个数中任取的一个数,那么关于的方程的根是负数的概率是________.13.某中学去年举办竞赛,颁发一二三等奖各若干名,获奖人数依次增加,各获奖学生获得的奖品价值依次减少(奖品单价都是整数元),其中有3人获得一等奖,每人获得的奖品价值34元,二等奖的奖品单价是5的倍数,获得三等奖的人数不超过10人,并且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三等奖的人数比去年分别增加了1人、2人、3人,购买对应奖品时发现单价分别上涨了6元、3元、2元.这样,今年购买奖品的总费用比去年增加了159元.那么去年购买奖品一共花了__________元.14.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).15.关于的一元二次方程有两个不相等的实数根,则的取值范围是__________.16.如图,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,则BM=_____________.17.如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为______.18.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;三、解答题(共66分)19.(10分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.20.(6分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=交于点C,D.作CE⊥x轴,垂足为E,CF⊥y轴,垂足为F.点B为OF的中点,四边形OECF的面积为16,点D的坐标为(4,﹣b).(1)求一次函数表达式和反比例函数表达式;(2)求出点C坐标,并根据图象直接写出不等式kx+b≤的解集.21.(6分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(8分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.23.(8分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/kg,市场调查发现,在一段时间内该产品每天的销售量W(kg)与销售单价x(元/kg)有如下关系:W=,设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的销售利润最大?最大利润是多少?24.(8分)如图,直线和反比例函数的图象都经过点,点在反比例函数的图象上,连接.(1)求直线和反比例函数的解析式;(2)直线经过点吗?请说明理由;(3)当直线与反比例数图象的交点在两点之间.且将分成的两个三角形面积之比为时,请直接写出的值.25.(10分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,,联结AC、OB,若CD=40,AC=20.(1)求弦AB的长;(2)求sin∠ABO的值.26.(10分)十八大以来,某校已举办五届校园艺术节.为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有________个班级表演这些节日,班数的中位数为________,在扇形统计图中,第四届班级数的扇形圆心角的度数为________;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用,,,表示).利用树状图或表格求出该班选择和两项的概率.
参考答案一、选择题(每小题3分,共30分)1、C【解析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.【详解】∵两圆的半径分别为6.5cm和3cm,圆心距为3.5cm,且6.5﹣3=3.5,∴两圆的位置关系是内切.故选:C.【点睛】考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.2、C【分析】DE为△ABC的中位线,则DE∥BC,DE=BC,再证明△ODE∽△OCB,由相似三角形的性质即可得到结论.【详解】解:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴,故选:C.【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键.3、A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】由于点A是反比例函数图象上一点,则S△AOB=|k|=2;
又由于函数图象位于一、三象限,则k=4.
故选A.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.4、D【分析】根据二次函数的图象得到相关信息并依次判断即可得到答案.【详解】由图象知:a<0,b>0,c>0,,∴abc<0,故A选项错误;若且,∴对称轴为,故B选项错误;∵二次函数的图象的对称轴为直线x=1,与x轴的一个交点的横坐标小于3,∴与x轴的另一个交点的横坐标大于-1,当x=-1时,得出y=a-b+c<0,故C选项错误;∵二次函数的图象的对称轴为直线x=1,开口向下,∴函数的最大值为y=a+b+c,∴,∴,故D选项正确,故选:D.【点睛】此题考查二次函数的图象,根据函数图象得到对应系数的符号,并判断代数式的符号,正确理解二次函数图象与系数的关系是解题的关键.5、A【分析】利用勾股定理可求出AC的长,根据坡比的定义即可得答案.【详解】∵AB=3,BC=1,∠ACB=90°,∴AC==,∴斜坡AB坡比为BC:AC=1:=:4,故选:A.【点睛】本题考查坡比的定义,坡比是坡面的垂直高度与水平宽度的比;熟练掌握坡比的定义是解题关键.6、B【分析】根据抛物线的对称轴公式:计算即可.【详解】解:抛物线y=x2+2x+3的对称轴是直线故选B.【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.7、C【分析】根据解析式,求出函数值y等于2时对应的月份,依据开口方向以及增减性,再求出y小于2时的月份即可解答.【详解】解:∵
∴当y=2时,n=2或者n=1.
又∵抛物线的图象开口向下,
∴1月时,y<2;2月和1月时,y=2.
∴该企业一年中应停产的月份是1月、2月、1月.
故选:C.【点睛】本题考查二次函数的应用.能将二次函数由一般式化为顶点式并理解二次函数的性质是解决此题的关键.8、B【解析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.9、A【分析】利用直角三角形的斜边中线与斜边的关系,先求出AB,再利用直角三角形的边角关系计算cosA.【详解】解:∵CD是Rt△ABC斜边AB上的中线,
∴AB=2CD=4,∴cosA==.故选A.【点睛】本题考查了直角三角形斜边的中线与斜边的关系、锐角三角函数.掌握直角三角形斜边的中线与斜边的关系是解决本题的关键.在直角三角形中,斜边的中线等于斜边的一半.10、D【分析】找重心最高点,就是要求这个二次函数的顶点,应该把一般式化成顶点式后,直接解答.【详解】解:h=3.5t-4.9t2=-4.9(t-)2+,∵-4.9<1∴当t=≈1.36s时,h最大.故选D.【点睛】此题主要考查了二次函数的应用,根据题意得出顶点式在解题中的作用是解题关键.二、填空题(每小题3分,共24分)11、【分析】画树状图展示所有9种等可能的结果数,再找出两人随机同时出手一次,做同样手势的结果数,然后根据概率公式求解.【详解】画树状图为:
共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3,
故两人一起做同样手势的概率是的概率为.故答案为:.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.12、【分析】解分式方程得,由方程的根为负数得出且,即a的取值范围,再从所列4个数中找到符合条件的结果数,从而利用概率公式计算可得.【详解】解:将方程两边都乘以,得:,解得,方程的解为负数,且,则且,所以在所列的4个数中,能使此方程的解为负数的有0、-2这2个数,则关于的方程的根为负数的概率为,故答案为:.【点睛】本题主要考查了分式方程的解法和概率公式,解题的关键是掌握解分式方程的能力及随机事件的概率(A)事件可能出现的结果数所有可能出现的结果数.13、257【分析】根据获奖人数依次增加,获得二三等奖的人数之和与二等奖奖品的单价相同,以及二等奖奖品单价为5的倍数,可知二等奖的单价为10或15,分别讨论即可得出答案.【详解】设二等奖人数为m,三等奖人数为n,二等奖单价为a,三等奖单价为b,根据题意列表分析如下:一等奖二等奖三等奖去年获奖人数3mn奖品单价34ab今年获奖人数3+1=4m+2n+3奖品单价34+6=40a+3b+2∵今年购买奖品的总费用比去年增加了159元∴整理得∵,,为5的倍数∴的值为10或15当时,,代入得,解得不符合题意,舍去;当时,有3种情况:①,,代入得,解得,符合题意此时去年购买奖品一共花费元②,,代入得,解得,不符合题意,舍去③,,代入得,解得,不符合题意,舍去综上可得,去年购买奖品一共花费257元故答案为:257.【点睛】本题考查了方程与不等式的综合应用,难度较大,根据题意推出的取值,然后分类讨论是解题的关键.14、【详解】解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD•sin∠ADB=60×=(m).故答案是:.15、【分析】根据根的判别式即可求出答案;【详解】解:由题意可知:解得:故答案为:【点睛】本题考查一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式并应用.16、【分析】根据正方形的性质,可证△BCM∽△CED,可得,即可求BM的长【详解】解:正方形ABCD中,AB=6,E是AD的中点,故ED=3;CE=3,∵BM⊥CE,∴△BCM∽△CED,根据相似三角形的性质,可得,解得:BM=.【点睛】主要考查了正方形的性质和相似三角形的判定和性质.充分利用正方形的特殊性质来找到相似的条件从而判定相似后利用相似三角形的性质解题.一般情况下求线段的长度常用相似中的比例线段求解.17、20°【解析】先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC绕点A逆时针旋转140°,得到△ADE,∴∠BAD=140°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°−∠BAD)=20°,故答案为:20°【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形18、3或9或或【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴,即,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案为:3或9或或.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.三、解答题(共66分)19、树状图见详解,【分析】画树状图展示所有9种等可能的结果数,找出两次摸出的小球所标数字之和为3的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球所标数字之和为3的结果数为2,所以两次摸出的小球所标数字之和为3的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率20、(1)y=﹣2x+1;(2)﹣2≤x<0或x≥1.【分析】(1)由矩形的面积求得m=﹣16,得到反比例函数的解析式,把D(1,﹣b)代入求得的解析式得到D(1,﹣1),求得b=1,把D(1,﹣1)代入y=kx+1,即可求得一次函数的解析式;(2)由一次函数的解析式求得B的坐标为(0,1),根据题意OF=8,C点的纵坐标为8,代入反比例函数的解析式求得横坐标,得到C的坐标,根据C、D的坐标结合图象即可求得不等式kx+b≤的解集.【详解】解:(1)∵CE⊥x轴,CF⊥y轴,∵四边形OECF的面积为16,∴|m|=16,∵双曲线位于二、四象限,∴m=﹣16,∴反比例函数表达式为y=,将x=1代入y=得:y=﹣1,∴D(1,﹣1),∴b=1将D(1,﹣1)代入y=kx+1,得k=﹣2∴一次函数的表达式为y=﹣2x+1;(2)∵y=﹣2x+1,∴B(0,1),∴OF=8,将y=8代入y=﹣2x+1得x=﹣2,∴C(﹣2,8),∴不等式kx+b≤的解集为﹣2≤x<0或x≥1.【点睛】本题主要考查了反比例函数与一次函数的交点问题,用到的知识点是待定系数法求反比例函数与一次函数的解析式,这里体现了数形结合的思想,关键是根据反比例函数与一次函数的交点求出不等式的解集.21、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=(米)答:坡底C点到大楼距离AC的值是20米.(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,∴AF=DE,DF=AE.设CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的长度为(80-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.22、树高为5.5米【解析】根据两角相等的两个三角形相似,可得△DEF∽△DCB,利用相似三角形的对边成比例,可得,代入数据计算即得BC的长,由AB=AC+BC,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为5.5米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.23、(1);(2)当销售单价定为30元时每天的销售利润最大,最大利润是1元【分析】(1)每天的销售利润y=每天的销售量×每件产品的利润;
(2)根据(1)得到的函数关系式求得相应的最值问题即可.【详解】(1);∴y与x之间的函数关系式为;(2),∵,∴当时,y有最大值,其最大值为1.
答:销售价定为30元时,每天的销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的实际应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法求得二次函数的最值问题是常用的解题方法.24、(1);(2)直线经过点,理由见解析;(1)的值为或.【分析】(1)依据直线l1:y=-2x+b和反比例数的图象都经过点P(2,1),可得b=5,m=2,进而得出直线l1和反比例函数的表达式;
(2)先根据反比例函数解析式求得点Q的坐标为,依据当时,y=-2×+5=4,可得直线l1经过点Q;
(1)根据OM将分成的两个三角形面积之比为,分以下两种情况:①△OMQ的面积:△OMP的面积=1:2,此时有QM:PM=1:2;②OMQ的面积:△OMP的面积=2:1,此时有QM:PM=2:1,再过M,Q分别作x轴,y轴的垂线,设点M的坐标为(a,b),根据平行线分线段成比例列方程求解得出点M的坐标,从而求出k的值.【详解】解:(1)∵直线和反比例函数的图象都经过点,.∴直线l1的解析式为y=-2x+5,反比例函数大家解析式为;(2)直线经过点,理由如下.点在反比例函数的图象上,.点的坐标为.当时,.直线经过点;(1)的值为或.理由如下:OM将分成的两个三角形面积之比为,分以下两种情况:①△OMQ的面积:△OMP的面积=1:2,此时有QM:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮店店面改造与设备升级合同
- 货物购销框架协议书范本
- 能源项目采购合同进度监管与节能减排协议
- 车辆维修保养包年合同协议书
- 能源管理软件销售与节能方案合同范本
- 餐饮连锁企业股权收购与整合合同
- 学校校园“踩踏式”混战紧急疏散演练合同
- 2024年放大镜项目资金筹措计划书参考
- 餐饮部操作规程
- 安防安全培训
- 《半导体及二极管》教学课件
- 病房床头卡模板
- 消杀记录台账
- 2022年西双版纳傣族自治州景洪教师进城考试笔试题库及答案解析
- 公路改建工程边施工边通车安全专项施工方案
- 施工总平面图布置图及说明
- 道路交通安全法律法规知识测试题
- 国际篮联记录表
- 煤矿培训:自救器课件
- 空心玻璃微珠项目资金申请报告写作模板+
- 药品管理学概论(药品管理学)
评论
0/150
提交评论