




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.2.在一个万人的小镇,随机调查了人,其中人看某电视台的早间新闻,在该镇随便问一个人,他看该电视台早间新闻的概率大约是()A. B. C. D.3.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.4.如下图:⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有()A.3个 B.4个 C.5个 D.6个5.如图所示的是太原市某公园“水上滑梯”的侧面图,其中段可看成是双曲线的一部分,其中,矩形中有一个向上攀爬的梯子,米,入口,且米,出口点距水面的距离为米,则点之间的水平距离的长度为()A.米 B.米 C.米 D.米6.下列说法正确的是()A.三点确定一个圆B.同圆中,圆周角等于圆心角的一半C.平分弦的直径垂直于弦D.一个三角形只有一个外接圆7.如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤48.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为()A. B. C. D.9.二次函数图像的顶点坐标为()A.(0,-2) B.(-2,0) C.(0,2) D.(2,0)10.在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球()A.21个 B.14个 C.20个 D.30个11.如图,直线与双曲线交于、两点,则当时,x的取值范围是A.或B.或C.或D.12.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()A.y=﹣x2+6x(3<x<6) B.y=﹣x2+12x(0<x<12)C.y=﹣x2+12x(6<x<12) D.y=﹣x2+6x(0<x<6)二、填空题(每题4分,共24分)13.点P(2,﹣1)关于原点的对称点坐标为(﹣2,m),则m=_____.14.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为___________________15.如图,在Rt△ABC中,,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.16.双曲线在每个象限内,函数值y随x的增大而增大,则m的取值范围是__________17.如图,在平面直角坐标系中,已知点E(﹣4,2),F(﹣1,﹣1).以原点O为位似中心,把△EFO扩大到原来的2倍,则点E的对应点E'的坐标为_____.18.已知二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(1,y1),则y1_____y1.(填“>”“<”或“=”)三、解答题(共78分)19.(8分)(1)计算:;(2)解方程:=1.20.(8分)作图题:⊙O上有三个点A,B,C,∠BAC=70°,请画出要求的角,并标注.(1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周角.21.(8分)(如图1,若抛物线l1的顶点A在抛物线l2上,抛物线l2的顶点B也在抛物线l1上(点A与点B不重合).我们称抛物线l1,l2互为“友好”抛物线,一条抛物线的“友好”抛物线可以有多条.(1)如图2,抛物线l3:与y轴交于点C,点D与点C关于抛物线的对称轴对称,则点D的坐标为;(2)求以点D为顶点的l3的“友好”抛物线l4的表达式,并指出l3与l4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的表达式为y=a2(x-h)2+k,写出a1与a2的关系式,并说明理由.22.(10分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余3位同学中随机选取1位,则恰好选中乙同学的概率是.(2)请用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.23.(10分)观察下列等式:第个等式为:;第个等式为:;第个等式为:;…根据等式所反映的规律,解答下列问题:(1)猜想:第个等式为_______________________________(用含的代数式表示);(2)根据你的猜想,计算:.24.(10分)已知一个二次函数图象上部分点的横坐标与纵坐标的对应值如下表所示:............(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)结合图像,直接写出当时,的取值范围.25.(12分)如图,在中,,,点在边上,且线段绕着点按逆时针方向旋转能与重合,点是与的交点.(1)求证:;(2)若,求的度数.26.小涛根据学习函数的经验,对函数的图像与性质进行了探究,下面是小涛的探究过程,请补充完整:(1)下表是与的几组对应值...-2-10123......-8-30mn13...请直接写出:=,m=,n=;(2)如图,小涛在平面直角坐标系中,描出了上表中已经给出的部分对应值为坐标的点,再描出剩下的点,并画出该函数的图象;(3)请直接写出函数的图像性质:;(写出一条即可)(4)请结合画出的函数图象,解决问题:若方程有三个不同的解,请直接写出的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.2、D【解析】根据等可能事件的概率公式,即可求解.【详解】÷=,答:他看该电视台早间新闻的概率大约是.故选D.【点睛】本题主要考查等可能事件的概率公式,掌握概率公式,是解题的关键.3、C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误.
故选C.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、A【分析】当P为AB的中点时OP最短,利用垂径定理得到OP垂直于AB,在直角三角形AOP中,由OA与AP的长,利用勾股定理求出OP的长;当P与A或B重合时,OP最长,求出OP的范围,由OP为整数,即可得到OP所有可能的长.【详解】当P为AB的中点时,由垂径定理得OP⊥AB,此时OP最短,∵AB=8,∴AP=BP=4,在直角三角形AOP中,OA=5,AP=4,根据勾股定理得OP=3,即OP的最小值为3;当P与A或B重合时,OP最长,此时OP=5,∴,则使线段OP的长度为整数的点P有3,4,5,共3个.故选A考点:1.垂径定理;2.勾股定理5、D【分析】根据题意B、C所在的双曲线为反比例函数,B点的坐标已知为B(2,5),代入即可求出反比例函数的解析式:y=,C(x,1)代入y=中,求出C点横坐标为10,可以得出DE=OD-OE即可求出答案.【详解】解:设B、C所在的反比例函数为y=B(xB,yB)∴xB=OE=AB=2yB=EB=OA=5代入反比例函数式中5=得到k=10∴y=∵C(xC,yC)yC=CD=1代入y=中∴1=xC=10∴DE=OD-OE=xC-xB=10-2=8故选D【点睛】此题主要考查了反比例函数的定义,根据已知参数求出反比例函数解析式是解题的关键.6、D【分析】由垂径定理的推论、圆周角定理、确定圆的条件和三角形外心的性质进行判断【详解】解:A、平面内不共线的三点确定一个圆,所以A错误;B、在同圆或等圆中,同弧所对的圆周角等于它所对的圆心角的一半,所以B错误;C、平分弦(非直径)的直径垂直于弦,所以C错误;D、一个三角形只有一个外接圆,所以D正确.故答案为D.【点睛】本题考查了垂径定理、圆周角定理以及确定圆的条件,灵活应用圆的知识是解答本题的关键.7、A【分析】如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,由勾股定理可求B'A=5,由三角形中位线定理可求B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,即可求解.【详解】解:如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,∵点B(0,3),B'(0,﹣3),点A(4,0),∴OB=OB'=3,OA=4,∴,∵点P是BC的中点,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,∴,故选:A.【点睛】本题考查了三角形中位线定理,勾股定理,平面直角坐标系,解决本题的关键是正确理解题意,熟练掌握三角形中位线定理的相关内容,能够得到线段之间的数量关系.8、A【解析】∵∠A=90°,AC=5,AB=12,∴BC==13,∴cosC=,故选A.9、A【分析】根据顶点式的坐标特点,直接写出顶点坐标即对称轴.【详解】解:抛物线y=x2-2是顶点式,根据顶点式的坐标特点可知,顶点坐标为(0,-2),故选A.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为,对称轴为x=h.10、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得:解得:x=21,经检验,x=21是原方程的解故红球约有21个,故选:A.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.11、C【解析】试题解析:根据图象可得当时,x的取值范围是:x<−6或0<x<2.故选C.12、D【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答.【详解】解:已知一边长为xcm,则另一边长为(6-x)cm.
则y=x(6-x)化简可得y=-x2+6x,(0<x<6),
故选:D.【点睛】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般.二、填空题(每题4分,共24分)13、1【分析】直接利用关于原点对称点的性质得出答案.【详解】∵点P(2,﹣1)关于原点的对称点坐标为(﹣2,m),∴m=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确把握对应点横纵坐标的关系是解题关键.14、m【分析】根据余弦的定义计算,得到答案.【详解】在Rt△ABC中,cosA=,∴AB=,故答案为:m.【点睛】本题考查了三角函数的问题,掌握三角函数的定义以及应用是解题的关键.15、9【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD∽△BAC,∴,∴,∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.16、【分析】根据反比例函数的性质可知,y随x的增大而增大则k知小于0,即m-2<0,解得m的范围即可.【详解】∵反比例函数y随x的增大而增大∴m-2<0则m<2【点睛】本题考查了反比例函数的性质,函数值y随x的增大而增大则k小于0,函数值y随x的增大而减小则k大于0.17、(﹣8,4),(8,﹣4)【分析】根据在平面直角坐标系中,位似变换的性质计算即可.【详解】解:以原点O为位似中心,把△EFO扩大到原来的2倍,点E(﹣4,2),∴点E的对应点E'的坐标为(﹣4×2,2×2)或(4×2,﹣2×2),即(﹣8,4),(8,﹣4),故答案为:(﹣8,4),(8,﹣4).【点睛】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.18、>【分析】根据二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(1,y1)和二次函数的性质可以判断y1和y1的大小关系.【详解】解:∵二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(1,y1),|﹣1﹣1|=1,|1﹣1|=1,∴y1>y1,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题(共78分)19、(2)3;(2)x=2或-2.【分析】(2)将特殊角的三角函数值代入及利用零指数幂法则计算即可得到结果;(2)方程移项后,利用因式分解法求出解即可.【详解】解:(2)=4×-2+2×2=2-2+2=3;(2)=2∴或,∴,.【点睛】本题考查了解一元二次方程和特殊角的三角函数值的应用,能熟记特殊角的三角函数值是解(2)小题题的关键,能正确分解因式是解(2)小题题的关键.20、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据∠BAC=70°,画一个140°的圆心角,与∠BAC同弧即可;(2)在劣弧BC上任意取一点P画一个∠BPC即可得110°的圆周角;(3)过点C画一条直径CD,连接AD即可画一个20°的圆周角.【详解】(1)如图1所示:∠BOC=2∠BAC=140°∴∠BOC即为140°的圆心角;(2)如图2所示:∠BPC=180°-∠BAC=110°,∴∠BPC即为110°的圆周角;(3)连接CO并延长交圆于点D,连接AD,∵∠DAC=90°,∴∠BAD=90°-∠BAC=20°∴则∠BAD即为20°的圆周角.【点睛】此题主要考查圆的基本性质,解题的关键是熟知圆周角定理的性质.21、(1);(2)的函数表达式为,;(3),理由详见解析【分析】(1)设x=1,求出y的值,即可得到C的坐标,根据抛物线L3:得到抛物线的对称轴,由此可求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)由(1)可知点D的坐标为(4,1),再由条件以点D为顶点的L3的“友好”抛物线L4的解析式,可求出L4的解析式,进而可求出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)根据:抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,可以列出两个方程,相加可得(a1+a2)(h-m)2=1.可得.【详解】解:(1)∵抛物线l3:,
∴顶点为(2,-1),对称轴为x=2,
设x=1,则y=1,
∴C(1,1),
∴点C关于该抛物线对称轴对称的对称点D的坐标为:(4,1);(2)解:设的函数表达式为由“友好”抛物线的定义,过点的函数表达式为与中同时随增大而增大的自变量的取值范围是(3)理由如下:∵抛物线与抛物线互为“友好”抛物线,①+②得:【点睛】本题属于二次函数的综合题,涉及了抛物线的对称变换、抛物线与坐标轴的交点坐标以及新定义的问题,解答本题的关键是数形结合,特别是(3)问根据已知条件得出方程组求解,有一定难度.22、(1);(2)【分析】(1)确定甲打第一场,再从乙、丙、丁3位同学中随机选取1位,根据概率的性质分析,即可得到答案;(2)结合题意,根据树状图的性质分析,即可完成求解.【详解】(1)确定甲打第一场∴从其余3位同学中随机选取1位,选中乙同学的概率为故答案为:;(2)树状图如下:共有12种情况,所选2名同学中有甲、乙两位同学的有2种结果∴恰好选中甲、乙两位同学的概率为:.【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率定义和树状图的性质,从而完成求解.23、(1);(2)-1【分析】(1)根据已知的三个等式,可观察出每个等式左边的分母经过将加号变为减号后取相反数作为化简结果,由此规律即可得出第n个等式的表达式;(2)根据(1)中的规律,将代数式化简后计算即可得出结果.【详解】解:(1)∵∴第个等式为;(2)计算:【点睛】本题考查了数字的变化类规律,解答本题的关键是发现数字的变化特点,写出化简结果即可求出代数式的值.24、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 扣件材料租赁合同范本
- 合伙养殖蚯蚓合同范本
- 厂房租赁合同范本 税
- 高压电工(运行)模拟题+参考答案
- 发廊合作协议合同范本
- 些合同不是担保合同范本
- 三八妇女节教师讲话稿
- led租用合同范本
- 农村合伙承包工程合同范本
- 发电机合同范本
- 2024年湖南高速铁路职业技术学院高职单招数学历年参考题库含答案解析
- 2024年沙洲职业工学院高职单招语文历年参考题库含答案解析
- 2024年广东省《辅警招聘考试必刷500题》考试题库【学生专用】
- 水文工程施工方案
- 《没有纽扣的红衬衫》课件
- 2024年学校综治安全工作计划(3篇)
- 车站信号自动控制(第二版) 课件 1-基础.理论
- 中建给排水及供暖施工方案
- 《前沿材料科学》课件
- FOCUS-PDCA改善案例-提高术前手术部位皮肤准备合格率医院品质管理成果汇报
- 2024解析:第五章透镜及其应用-基础练(解析版)
评论
0/150
提交评论